# **Chemistry Academic**

**Curriculum Guide** 

**Dunmore School District** 

Dunmore, PA



#### **Chemistry Academic**

#### Prerequisite:

- Successful completion of biology.
- Strong algebra skills, including solving for variables, scientific notation, and working with exponents.

This is an introductory course in theories and concepts of modern chemistry. This course is designed to prepare students for college chemistry. Topics will be presented to increase awareness and understanding of the role of chemistry in everyday life and environmental issues. The course emphasizes the atomic and molecular structure, chemical bonding, stoichiometry, properties of gases, solutions, acid-base reactions, thermodynamics, and oxidation-reduction/electrochemistry, all with a strong emphasis on the mathematics of chemistry. The laboratory work will develop students reasoning power, the ability to apply chemical principles; as well as acquaint students with chemical laboratory techniques. This course meets seven periods each week. Two of the periods are dedicated to laboratory experiments. The laboratory experiences are an essential part of the course and are related to the topics and concepts being discussed at the time in class.

Year-at-a-glance

| ject: Chemistry Academic | Grade Level: 11 | Date Completed: 2/26/2018 |
|--------------------------|-----------------|---------------------------|
|--------------------------|-----------------|---------------------------|

# 1<sup>st</sup> Quarter

| Topic        | Resources        | Standards                          |
|--------------|------------------|------------------------------------|
| Measuring    | Teacher prepared | A.1.1.2, A.1.1.3                   |
| Nomenclature | Teacher prepared | A.1.1.1, A.1.1.5, A.1.2.2          |
| Moles        | Teacher prepared | A.1.1.1, A.1.2.4, B.1.1.1, B.2.2.2 |
| More Moles   | Teacher prepared | B.1.2.1, B.1.2.2, B.1.2.3          |

# 2<sup>nd</sup> Quarter

| Topic                                              | Resources        | Standards                                                                             |
|----------------------------------------------------|------------------|---------------------------------------------------------------------------------------|
| Balancing equations and some qualitative chemistry | Teacher prepared | B.2.1.4, B.2.1.5                                                                      |
| Predicting products                                | Teacher prepared | B.2.1.3, B.2.1.4, B.2.1.5                                                             |
| Stoichiometry                                      | Teacher prepared | B.2.1.1, B.2.1.2, B.2.2.2                                                             |
| Atomic Theory Part I                               | Teacher prepared | A.1.1.4, A.1.2.4, A.2.1.1, A.2.1.2,<br>A.2.2.1, A.2.2.2, A.2.2.3, A.2.2.4,<br>A.2.3.1 |

# 3<sup>rd</sup> Quarter

| Topic                                                     | Resources        | Standards                  |
|-----------------------------------------------------------|------------------|----------------------------|
| Coulomb's law, the shell model, and Atomic Theory Part II | Teacher prepared | A.2.2.1, A.2.2.2, A.2.2.3, |
|                                                           |                  | A.2.2.4, A.2.3.1, A.2.3.2  |
| Periodic trends                                           | Teacher prepared | A.2.2.2, A.2.3.1, A.2.3.2  |
|                                                           |                  |                            |
| Introduction to Bonding                                   | Teacher prepared | A.1.2.3, A.1.2.5, B.1.3.1, |
|                                                           |                  | B.1.3.2, B.1.3.3, B.1.4.1, |
|                                                           |                  | B.1.4.2                    |

# 4<sup>th</sup> Quarter

| Topic                                                       | Resources        | Standards                          |
|-------------------------------------------------------------|------------------|------------------------------------|
| Unit twelve: Introduction to the kinetic theory. Solids and | Teacher prepared | A.1.1.1, B.1.4.1                   |
| liquids. Heat calculations and calorimetry.                 |                  |                                    |
| Unit thirteen: Gas behavior                                 | Teacher prepared | B.2.2.1                            |
| Unit fourteen: Gas laws and math                            | Teacher prepared | B.2.1.1, B.2.1.2, B.2.2.1, B.2.2.2 |
| Unit fifteen: Electrochemistry                              | Teacher prepared | A.1.1.1, B.2.1.2                   |
| Review and Final Exam                                       |                  |                                    |

| General Topic      | Anchor Descriptor                                           | Eligible Content,                        | Resources & Activities | Assessments          | Suggested<br>Time |
|--------------------|-------------------------------------------------------------|------------------------------------------|------------------------|----------------------|-------------------|
|                    | PA Academic and Core<br>Standards                           | Essential Knowledge, Skills & Vocabulary | Activities             |                      | (In Days)         |
| Measuring          | Anchor Descriptor                                           | Essential Knowledge/Skills:              | Teacher prepared       | Teacher prepared     | 13 days           |
|                    | CHEM.A.1.1 Identify and                                     | The scientific method                    |                        | tests, quizzes, etc. |                   |
| This first unit is | describe how observable and                                 | Metrics                                  |                        |                      |                   |
| used as an         | measurable properties can be                                | Measuring techniques                     |                        |                      |                   |
| introduction to    | used to classify and describe                               | Significant digits                       |                        |                      |                   |
| chemistry,         | matter and energy.                                          | Scientific notation                      |                        |                      |                   |
| particularly the   |                                                             | Dimensional analysis                     |                        |                      |                   |
| •                  | Framework Concept:                                          | Density                                  |                        |                      |                   |
| lab aspect of      | Stable forms of matter are                                  | Percent Error                            |                        |                      |                   |
| chemistry, and     | those in which the electric                                 | Graphing                                 |                        |                      |                   |
| how it relates to  | potential energy is minimized.                              |                                          |                        |                      |                   |
| proper measuring   |                                                             | Lab Experiments:                         |                        |                      |                   |
| and handling of    | PA Academic Standards:                                      | B                                        |                        |                      |                   |
| measurements.      | Science:                                                    | Proper measuring with                    |                        |                      |                   |
| We will also learn |                                                             | significant digits                       |                        |                      |                   |
| to deal with       | (The following standards apply to                           | Density of water- inquiry                |                        |                      |                   |
| conversions.       | all units, but are not repeated in                          | Density of metal cylinder                |                        |                      |                   |
| Conversions.       | the document)                                               | Identifying a metal using density        |                        |                      |                   |
| MODULE A 4         | 2440 D. Avellerede en et                                    | Density by graphing                      |                        |                      |                   |
| MODULE A.1—        | 3.1.10.D: Apply scale as a way of                           | Density of plastics- inquiry             |                        |                      |                   |
| Structure and      | relating concepts and ideas to one another by some measure. | Density of metal BB's- inquiry           |                        |                      |                   |
| Properties of      | Apply dimensional analysis                                  | Bensity of Metal BB's inquiry            |                        |                      |                   |
| Matter             | and scale as a ratio.                                       | Eligible Content:                        |                        |                      |                   |
|                    | <ul> <li>Convert one scale to another.</li> </ul>           | CHEM.A.1.1.2 Classify                    |                        |                      |                   |
| Framework Big      | Convert one scale to another.                               | observations as qualitative              |                        |                      |                   |
| Idea: Matter can   | 3.1.10.E: Describe patterns of                              | and/or quantitative.                     |                        |                      |                   |
| be understood in   | change in nature, physical and                              | , '                                      |                        |                      |                   |
| terms of the       | man-made systems.                                           | CHEM.A.1.1.3 Utilize                     |                        |                      |                   |
| terms or the       | Describe how fundamental                                    | significant figures to                   |                        |                      |                   |

|                   | <del>_</del>                                                                   | Curriculum Guide               |              | <br>, |
|-------------------|--------------------------------------------------------------------------------|--------------------------------|--------------|-------|
| types of atoms    | science and technology                                                         | communicate the uncertainty    |              |       |
| present and the   | concepts are used to solve                                                     | in a quantitative observation. |              |       |
| interactions both | practical problems (e.g.,                                                      |                                |              |       |
| between and       | momentum, Newton's laws of                                                     | Framework Competency:          |              |       |
| within atoms.     | universal gravitation, tectonics,                                              | Utilize significant figures to |              |       |
|                   | conservation of mass and                                                       | communicate the precision in   |              |       |
|                   | energy,                                                                        | a quantitative observation     |              |       |
|                   | <ul> <li>Recognize that stable systems<br/>often involve underlying</li> </ul> | Accuracy discussion:           |              |       |
|                   | dynamic changes (e.g., a                                                       | Calculate error and percent    |              |       |
|                   | chemical reaction at equilibrium                                               | error given experimental       |              |       |
|                   | has molecules reforming                                                        | data and the accepted value.   |              |       |
|                   | continuously).                                                                 | data and the accepted value.   |              |       |
|                   | Describe the effects of error in                                               | Vocabulary:                    | 1            |       |
|                   | measurements.                                                                  | Density                        |              |       |
|                   |                                                                                | Dimensional analysis           |              |       |
|                   | 3.2.10.B: Apply process                                                        | ,                              |              |       |
|                   | knowledge and organize                                                         |                                |              |       |
|                   | scientific and technological                                                   |                                |              |       |
|                   | phenomena in varied ways.                                                      |                                |              |       |
|                   | Describe materials using                                                       |                                |              |       |
|                   | precise quantitative and                                                       |                                |              |       |
|                   | qualitative skills based on observations.                                      |                                |              |       |
|                   | <ul> <li>Develop appropriate scientific</li> </ul>                             |                                |              |       |
|                   | experiments: raising questions,                                                |                                |              |       |
|                   | formulating hypotheses, testing,                                               |                                |              |       |
|                   | controlled experiments,                                                        |                                |              |       |
|                   | recognizing variables,                                                         |                                |              |       |
|                   | manipulating variables,                                                        |                                |              |       |
|                   | interpreting data, and producing                                               |                                | <u> </u>     |       |
|                   | solutions.                                                                     |                                |              |       |
|                   | Use process skills to make                                                     |                                |              |       |
|                   | inferences and predictions using                                               |                                |              |       |
|                   | collected information and to                                                   |                                | <sup>1</sup> |       |

|             |                            | Curricularii Guide |  |  |
|-------------|----------------------------|--------------------|--|--|
| communi     | cate, using space /        |                    |  |  |
| time relat  | tionships, defining        |                    |  |  |
| operation   | nally.                     |                    |  |  |
|             |                            |                    |  |  |
| 3.2.10.C:   | Apply the elements of      |                    |  |  |
|             | inquiry to solve           |                    |  |  |
| problems    | · ·                        |                    |  |  |
| • Genera    | te questions about         |                    |  |  |
|             | organisms and/or           |                    |  |  |
| I           | at can be answered         |                    |  |  |
| through s   | scientific investigations. |                    |  |  |
|             | e the appropriateness      |                    |  |  |
| of question |                            |                    |  |  |
| I           | an investigation with      |                    |  |  |
| adequate    | control and limited        |                    |  |  |
| variables   | to investigate a           |                    |  |  |
| question.   | -                          |                    |  |  |
| Conduc      | t a multiple step          |                    |  |  |
| experime    | nt.                        |                    |  |  |
| Organiz     | e experimental             |                    |  |  |
| informati   | on using a variety of      |                    |  |  |
| analytic n  | nethods.                   |                    |  |  |
| • Judge th  | he significance of         |                    |  |  |
| experime    | ntal information in        |                    |  |  |
| answering   | g the question.            |                    |  |  |
| • Suggest   | additional steps that      |                    |  |  |
| might be    | done experimentally.       |                    |  |  |
|             |                            |                    |  |  |
| 3.2.10.D:   | Identify and apply the     |                    |  |  |
| technolog   | gical design process to    |                    |  |  |
| solve pro   |                            |                    |  |  |
| • Examine   | e the problem, rank all    |                    |  |  |
| necessary   | / information and all      |                    |  |  |
| questions   | s that must be             |                    |  |  |
| answered    | d.                         |                    |  |  |

|                                   | Curriculum Guide |  |  |
|-----------------------------------|------------------|--|--|
| Propose and analyze a             |                  |  |  |
| solution.                         |                  |  |  |
| • Implement the solution.         |                  |  |  |
| Evaluate the solution, test,      |                  |  |  |
| redesign and improve as           |                  |  |  |
| necessary.                        |                  |  |  |
| Communicate the process and       |                  |  |  |
| evaluate and present the          |                  |  |  |
| impacts of the solution.          |                  |  |  |
|                                   |                  |  |  |
| 3.7.10.A: Identify and safely use |                  |  |  |
| a variety of tools, basic         |                  |  |  |
| machines, materials and           |                  |  |  |
| techniques to solve problems      |                  |  |  |
| and answer questions.             |                  |  |  |
| Select and safely apply           |                  |  |  |
| appropriate tools, materials and  |                  |  |  |
| processes necessary to solve      |                  |  |  |
| complex problems.                 |                  |  |  |
| Apply advanced tool and           |                  |  |  |
| equipment manipulation            |                  |  |  |
| techniques to solve problems.     |                  |  |  |
| 3.7.10.B: Apply appropriate       |                  |  |  |
| instruments and apparatus to      |                  |  |  |
| examine a variety of objects and  |                  |  |  |
| processes.                        |                  |  |  |
| Describe and use appropriate      |                  |  |  |
| instruments to gather and         |                  |  |  |
| analyze data.                     |                  |  |  |
| Compare and contrast              |                  |  |  |
| different scientific measurement  |                  |  |  |
| systems; select the best          |                  |  |  |
| measurement system for a          |                  |  |  |
| specific situation.               |                  |  |  |

|                                  | Curriculum Guide |  |  |
|----------------------------------|------------------|--|--|
| Explain the need to estimate     |                  |  |  |
| measurements within error of     |                  |  |  |
| various instruments.             |                  |  |  |
| Apply accurate measurement       |                  |  |  |
| knowledge to solve everyday      |                  |  |  |
| problems.                        |                  |  |  |
| Describe and demonstrate the     |                  |  |  |
| operation and use of advanced    |                  |  |  |
| instrumentation in evaluating    |                  |  |  |
| material and chemical            |                  |  |  |
| properties (e.g., scanning       |                  |  |  |
| electron microscope, nuclear     |                  |  |  |
| magnetic resonance machines).    |                  |  |  |
|                                  |                  |  |  |
| 3.7.10.D: Utilize computer       |                  |  |  |
| software to solve specific       |                  |  |  |
| problems.                        |                  |  |  |
| Identify legal restrictions in   |                  |  |  |
| the use of software and the      |                  |  |  |
| output of data.                  |                  |  |  |
| Apply advanced graphic           |                  |  |  |
| manipulation and desktop         |                  |  |  |
| publishing techniques.           |                  |  |  |
| Apply basic multimedia           |                  |  |  |
| applications.                    |                  |  |  |
| Apply advanced word              |                  |  |  |
| processing, database and         |                  |  |  |
| spreadsheet skills.              |                  |  |  |
| Describe and demonstrate         |                  |  |  |
| how two or more software         |                  |  |  |
| applications can be used to      |                  |  |  |
| produce an output.               |                  |  |  |
| Select and apply software        |                  |  |  |
| designed to meet specific needs. |                  |  |  |
|                                  |                  |  |  |

|                                  | Carricalani Galac |  |  |
|----------------------------------|-------------------|--|--|
| PA Core Standards:               |                   |  |  |
| Reading for Science and          |                   |  |  |
| Technical Subjects, 6-12         |                   |  |  |
| 3.5 Reading Informational Text   |                   |  |  |
| Students read, understand, and   |                   |  |  |
| respond to informational text-   |                   |  |  |
| with emphasis on comprehension,  |                   |  |  |
| making connections among ideas   |                   |  |  |
| and between texts with focus on  |                   |  |  |
| textual evidence.                |                   |  |  |
|                                  |                   |  |  |
| PA Core Standards: Writing for   |                   |  |  |
| Science and Technical Subjects,  |                   |  |  |
| 6-12                             |                   |  |  |
| 3.6 Writing                      |                   |  |  |
| Students write for different     |                   |  |  |
| purposes and audiences.          |                   |  |  |
| Students write clear and focused |                   |  |  |
| text to convey a well-defined    |                   |  |  |
| perspective and appropriate      |                   |  |  |
| content.                         |                   |  |  |

| General Topic       | Anchor Descriptor  PA Academic and Core  Standards | Eligible Content, Essential Knowledge, Skills & Vocabulary | Resources & Activities | Assessments          | Suggested<br>Time<br>(In Days) |
|---------------------|----------------------------------------------------|------------------------------------------------------------|------------------------|----------------------|--------------------------------|
| Nomenclature        | Anchor Descriptor                                  | Essential Knowledge/Skills:                                | Teacher prepared       | Teacher prepared     | 11 days                        |
|                     | CHEM.A.1.1 Identify and                            | Classify matter                                            |                        | tests, quizzes, etc. |                                |
| In this unit we     | describe how observable and                        | Heterogeneous                                              |                        |                      |                                |
| will begin to learn | measurable properties can be                       | Solutions- solute and solvent                              |                        |                      |                                |
| the language of     | used to classify and describe                      | Compounds                                                  |                        |                      |                                |
| chemistry,          | matter and energy.                                 | Elements Chemical changes                                  |                        |                      |                                |
| starting with       | CHEM.A.1.2 Compare the                             | Physical changes                                           |                        |                      |                                |
| classifying matter  | properties of mixtures.                            | Chemical properties                                        |                        |                      |                                |
| and changes in      | properties of mixtures.                            | Physical properties                                        |                        |                      |                                |
| matter, then        | Framework Concept:                                 | Recognizing ionic vs covalent                              |                        |                      |                                |
| moving through      | Stable forms of matter are                         | Writing binary and ternary                                 |                        |                      |                                |
| nomenclature.       | those in which the electric                        | ionic formulae                                             |                        |                      |                                |
|                     | potential energy is minimized.                     | Naming binary and ternary ionic compounds                  |                        |                      |                                |
| MODULE A.1—         |                                                    | Writing and naming                                         |                        |                      |                                |
| Structure and       | PA Academic Standards:                             | molecular compounds                                        |                        |                      |                                |
| Properties of       | Science                                            | Writing and naming acids and                               |                        |                      |                                |
| Matter              | 3.4.10.A: Explain concepts about                   | bases                                                      |                        |                      |                                |
| Framework Big       | the structure and properties of matter.            | Lab Experiments:                                           |                        |                      |                                |
| Idea: Matter can    | Recognize formulas for simple                      | Conductivity tests- inquiry                                |                        |                      |                                |
| be understood in    | inorganic compounds.                               | Using a Bunsen burner                                      |                        |                      |                                |
| terms of the        | Apply knowledge of mixtures                        | Reaction in a bag- inquiry                                 |                        |                      |                                |
| types of atoms      | to appropriate separation                          | Separating a mixture                                       |                        |                      |                                |
| present and the     | techniques.                                        | inquiry                                                    |                        |                      |                                |
| interactions both   |                                                    | Chemical or physical change-                               |                        |                      |                                |

| between and   | PA Core Standards:               | inquiry                        |  |  |
|---------------|----------------------------------|--------------------------------|--|--|
| within atoms. | Reading for Science and          | Elements vs compounds-         |  |  |
|               | Technical Subjects, 6-12         | inquiry                        |  |  |
|               | 3.5 Reading Informational Text   | Pure substance vs mixture-     |  |  |
|               | Students read, understand, and   | inquiry                        |  |  |
|               | respond to informational text-   | Intro to chromatography        |  |  |
|               | with emphasis on comprehension,  | Chromatography whodunit-       |  |  |
|               | making connections among ideas   | inquiry                        |  |  |
|               | and between texts with focus on  |                                |  |  |
|               | textual evidence.                | Eligible Content:              |  |  |
|               |                                  | CHEM.A.1.1.1 Classify          |  |  |
|               | PA Core Standards: Writing for   | physical or chemical changes   |  |  |
|               | Science and Technical Subjects,  | within a system in terms of    |  |  |
|               | 6-12                             | matter and/or energy.          |  |  |
|               | 3.6 Writing                      | ,                              |  |  |
|               | Students write for different     | CHEM.A.1.1.5 Apply a           |  |  |
|               | purposes and audiences.          | systematic set of rules        |  |  |
|               | Students write clear and focused | (IUPAC) for naming             |  |  |
|               | text to convey a well-defined    | compounds and writing          |  |  |
|               | perspective and appropriate      | chemical formulas (e.g.,       |  |  |
|               | content.                         | binary covalent, binary ionic, |  |  |
|               |                                  | ionic compounds containing     |  |  |
|               |                                  | polyatomic ions).              |  |  |
|               |                                  | polyatornic ions).             |  |  |
|               |                                  | CHEM.A.1.2.2 Differentiate     |  |  |
|               |                                  | between homogeneous and        |  |  |
|               |                                  | heterogeneous mixtures         |  |  |
|               |                                  | (e.g., how such mixtures can   |  |  |
|               |                                  | I                              |  |  |
|               |                                  | be separated).                 |  |  |
|               |                                  |                                |  |  |
|               |                                  | Framework Competency:          |  |  |
|               |                                  | Apply a systematic set of      |  |  |
|               |                                  | rules (IUPAC) for naming       |  |  |
|               |                                  | compounds and writing          |  |  |

| - | Curriculum Guide               |  |  |
|---|--------------------------------|--|--|
|   | chemical formulas (e.g.,       |  |  |
|   | binary covalent, binary ionic, |  |  |
|   | ionic compounds containing     |  |  |
|   | polyatomic ions)               |  |  |
|   |                                |  |  |
|   | Vocabulary:                    |  |  |
|   | Nomenclature                   |  |  |
|   | IUPAC                          |  |  |
|   | Cation                         |  |  |
|   | Anion                          |  |  |
|   | Polyatomic ion                 |  |  |
|   | ·                              |  |  |
|   |                                |  |  |
|   |                                |  |  |
|   |                                |  |  |
|   |                                |  |  |
|   |                                |  |  |
|   |                                |  |  |
|   |                                |  |  |
|   |                                |  |  |
|   |                                |  |  |
|   |                                |  |  |
|   |                                |  |  |
|   |                                |  |  |
|   |                                |  |  |
|   |                                |  |  |

| General Topic       | Anchor Descriptor                                           | Eligible Content,                           | Resources & Activities | Assessments          | Suggested         |
|---------------------|-------------------------------------------------------------|---------------------------------------------|------------------------|----------------------|-------------------|
|                     | PA Academic and Core<br>Standards                           | Essential Knowledge,<br>Skills & Vocabulary |                        |                      | Time<br>(In Days) |
| Moles               | Anchor Descriptor                                           | Essential Knowledge/Skills:                 | Teacher prepared       | Teacher prepared     | 11 days           |
|                     | CHEM.A.1.1 Identify and                                     | Moles                                       |                        | tests, quizzes, etc. |                   |
| This unit goes      | describe how observable and                                 | Avogadro's number                           |                        |                      |                   |
| back to the         | measurable properties can be                                | Atoms to molecules to moles                 |                        |                      |                   |
| quantitative        | used to classify and describe                               | to grams                                    |                        |                      |                   |
| nature of           | matter and energy.                                          | Ions to formula units to                    |                        |                      |                   |
| chemistry with an   |                                                             | moles to grams                              |                        |                      |                   |
| introduction to     | CHEM.A.1.2 Compare the                                      | Molarity                                    |                        |                      |                   |
|                     | properties of mixtures.                                     | Making a solution                           |                        |                      |                   |
| moles, and the      |                                                             | Dilutions                                   |                        |                      |                   |
| many possible       | CHEM.B.1.1 Explain how the                                  | Volume of a gas at STP                      |                        |                      |                   |
| calculations        | mole is a fundamental unit of                               | Lab E and an also                           |                        |                      |                   |
| concerning this in  | chemistry.                                                  | Lab Experiments:                            |                        |                      |                   |
| chemistry,          | CUENA D 2 2 Evaloia how the                                 | Fundamentals of                             |                        |                      |                   |
| including our first | CHEM.B.2.2 Explain how the kinetic molecular theory relates | experimental design                         |                        |                      |                   |
| concentration       | to the behavior of gases.                                   | Find the hottest part of the                |                        |                      |                   |
| unit- molarity.     | to the behavior of gases.                                   | Bunsen burner flame- inquiry                |                        |                      |                   |
| unic molarity.      | Framework Concept: The mole,                                | How many moles of Zn are in                 |                        |                      |                   |
| MODULE A—           | as a fundamental unit, is used                              | a penny?- inquiry                           |                        |                      |                   |
|                     | to represent a specific quantity                            | Law of conservation of mass-                |                        |                      |                   |
| Structure and       | of atomic particles such as                                 | inquiry                                     |                        |                      |                   |
| Properties of       | atoms, ions, formula units, and                             | Making a solution with                      |                        |                      |                   |
| Matter              | molecules.                                                  | volumetric flask.                           |                        |                      |                   |
|                     |                                                             | Testing the solution by                     |                        |                      |                   |
| MODULE B—The        | PA Academic Standards:                                      | evaporation                                 |                        |                      |                   |
| Mole Concept        | Science                                                     | How many atoms thick is the                 |                        |                      |                   |
| and Chemical        | N/A                                                         | Al foil?- inquiry                           |                        |                      |                   |
| Interactions        |                                                             |                                             |                        |                      |                   |
|                     | PA Core Standards:                                          |                                             |                        |                      |                   |

|                   |                                                                                                                                                                                                                                          | Curriculum Guide                                                                                                                                                                                                                    |  |  |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Framework Big     | Reading for Science and                                                                                                                                                                                                                  | Eligible Content:                                                                                                                                                                                                                   |  |  |
| Idea: Matter can  | Technical Subjects, 6-12                                                                                                                                                                                                                 | CHEM.A.1.1.1 Classify                                                                                                                                                                                                               |  |  |
| be understood in  | 3.5 Reading Informational Text                                                                                                                                                                                                           | physical or chemical changes                                                                                                                                                                                                        |  |  |
| terms of the      | Students read, understand, and                                                                                                                                                                                                           | within a system in terms of                                                                                                                                                                                                         |  |  |
| types of atoms    | respond to informational text-                                                                                                                                                                                                           | matter and/or energy.                                                                                                                                                                                                               |  |  |
| present and the   | with emphasis on comprehension, making connections among ideas                                                                                                                                                                           |                                                                                                                                                                                                                                     |  |  |
| •                 | and between texts with focus on                                                                                                                                                                                                          | CHEM.A.1.2.4 Describe                                                                                                                                                                                                               |  |  |
| interactions both | textual evidence.                                                                                                                                                                                                                        | various ways that                                                                                                                                                                                                                   |  |  |
| between and       | textual evidence.                                                                                                                                                                                                                        | concentration can be                                                                                                                                                                                                                |  |  |
| within atoms.     | PA Core Standards: Writing for Science and Technical Subjects, 6-12 3.6 Writing Students write for different purposes and audiences. Students write clear and focused text to convey a well-defined perspective and appropriate content. | expressed and calculated (e.g., molarity, percent by mass, percent by volume).  CHEM.B.1.1.1 Apply the mole concept to representative particles (e.g., counting, determining mass of atoms, ions, molecules, and/or formula units). |  |  |
|                   |                                                                                                                                                                                                                                          | CHEM.B.2.2.2 Predict the amounts of reactants and products involved in a chemical reaction using molar volume of a gas at STP.                                                                                                      |  |  |
|                   |                                                                                                                                                                                                                                          | Vocabulary:<br>Avogadro's Number                                                                                                                                                                                                    |  |  |
|                   |                                                                                                                                                                                                                                          | Molar mass                                                                                                                                                                                                                          |  |  |
|                   |                                                                                                                                                                                                                                          | Molar Volume                                                                                                                                                                                                                        |  |  |
|                   |                                                                                                                                                                                                                                          | Standard Temperature                                                                                                                                                                                                                |  |  |
|                   |                                                                                                                                                                                                                                          | Standard Pressure                                                                                                                                                                                                                   |  |  |

| General Topic      | Anchor Descriptor PA Academic and Core Standards              | Eligible Content,<br>Essential Knowledge,<br>Skills & Vocabulary | Resources & Activities | Assessments          | Suggested<br>Time<br>(In Days) |
|--------------------|---------------------------------------------------------------|------------------------------------------------------------------|------------------------|----------------------|--------------------------------|
| More Moles         | Anchor Descriptor                                             | Essential Knowledge/Skills:                                      | Teacher prepared       | Teacher prepared     | 10 days                        |
|                    | CHEM.B.1.2 Apply the mole                                     | Percentage composition                                           |                        | tests, quizzes, etc. |                                |
| The relationship   | concept to the composition of                                 | Finding ratios of atoms                                          |                        |                      |                                |
| between Unit       | matter.                                                       | Empirical formulae                                               |                        |                      |                                |
| two's              |                                                               | Molecular formulae                                               |                        |                      |                                |
| nomenclature       | Framework Concept:                                            | Hydrates                                                         |                        |                      |                                |
| and Unit three's   | The mole, as a fundamental                                    | % of water                                                       |                        |                      |                                |
|                    | unit, is used to represent a                                  |                                                                  |                        |                      |                                |
| moles is explored  | specific quantity of atomic                                   | Lab Experiments:                                                 |                        |                      |                                |
| by calculating     | particles such as atoms, ions,                                |                                                                  |                        |                      |                                |
| percentages by     | formula units, and molecules.                                 | Burning Mg and purifying                                         |                        |                      |                                |
| mass and ratios of |                                                               | MgO                                                              |                        |                      |                                |
| moles. It is a     | PA Academic Standards:                                        | Finding the formula of a                                         |                        |                      |                                |
| preliminary look   | Science                                                       | hydrate                                                          |                        |                      |                                |
| at the concept of  |                                                               | Finding the % of O₂ in the air                                   |                        |                      |                                |
| stoichiometry,     | N/A                                                           |                                                                  |                        |                      |                                |
| • •                |                                                               | Eligible Content:                                                |                        |                      |                                |
| but only within a  | PA Core Standards:                                            | CHEM.B.1.2.1 Determine the                                       |                        |                      |                                |
| formula.           | Reading for Science and                                       | empirical and molecular                                          |                        |                      |                                |
|                    | Technical Subjects, 6-12                                      | formulas of compounds.                                           |                        |                      |                                |
| MODULE B—The       | 3.5 Reading Informational Text                                |                                                                  |                        |                      |                                |
| Mole Concept       | Students read, understand, and respond to informational text- | CHEM.B.1.2.2 Apply the law                                       |                        |                      |                                |
| and Chemical       | with emphasis on comprehension,                               | of definite proportions to the                                   |                        |                      |                                |
| Interactions       | making connections among ideas                                | classification of elements and                                   |                        |                      |                                |
| interactions       | and between texts with focus on                               | compounds as pure                                                |                        |                      |                                |
|                    | textual evidence.                                             | substances.                                                      |                        |                      |                                |
| Framework Big      |                                                               | CHEM.B.1.2.3 Relate the                                          |                        |                      |                                |
| Idea: Matter can   | PA Core Standards: Writing for                                | percent composition and                                          |                        |                      |                                |
| be understood in   | Science and Technical Subjects,                               | mass of each element                                             |                        |                      |                                |

# Dunmore School District

|                   |                                                          | Curriculum Guide                               |  |  |
|-------------------|----------------------------------------------------------|------------------------------------------------|--|--|
| terms of the      | 6-12                                                     | present in a compound.                         |  |  |
| types of atoms    | 3.6 Writing                                              |                                                |  |  |
| present and the   | Students write for different                             |                                                |  |  |
| interactions both | purposes and audiences. Students write clear and focused | Framework Competency:                          |  |  |
| between and       | text to convey a well-defined                            | Analyze and interpret data to                  |  |  |
| within atoms.     | perspective and appropriate                              | apply the laws of definite                     |  |  |
| Within atomor     | content.                                                 | proportions and multiple                       |  |  |
|                   |                                                          | proportions, to determine                      |  |  |
|                   |                                                          | empirical and molecular                        |  |  |
|                   |                                                          | formulas of compounds, percent composition and |  |  |
|                   |                                                          | mass of elements in a                          |  |  |
|                   |                                                          | compound.                                      |  |  |
|                   |                                                          | compound.                                      |  |  |
|                   |                                                          |                                                |  |  |
|                   |                                                          | Vocabulary:                                    |  |  |
|                   |                                                          | Avogadro's number                              |  |  |
|                   |                                                          | Empirical Formula                              |  |  |
|                   |                                                          | Law of definite proportions                    |  |  |
|                   |                                                          | Law of multiple proportions                    |  |  |
|                   |                                                          | Molar mass                                     |  |  |
|                   |                                                          | Molar volume                                   |  |  |
|                   |                                                          | Molecular                                      |  |  |
|                   |                                                          | Percent composition                            |  |  |
|                   |                                                          | Ratio                                          |  |  |

| General Topic     | Anchor Descriptor                 | Eligible Content,                                                     | Resources & Activities | Assessments          | Suggested         |
|-------------------|-----------------------------------|-----------------------------------------------------------------------|------------------------|----------------------|-------------------|
|                   | PA Academic and Core<br>Standards | Essential Knowledge,<br>Skills & Vocabulary                           |                        |                      | Time<br>(In Days) |
| Balancing         | Anchor Descriptor                 | Essential Knowledge/Skills:                                           | Teacher prepared       | Teacher prepared     | 10 days           |
| equations and     | CHEM.B.2.1 Predict what           | Balancing equations                                                   |                        | tests, quizzes, etc. |                   |
| some qualitative  | happens during a chemical         | Writing reactions from word                                           |                        |                      |                   |
| chemistry         | reaction.                         | equations                                                             |                        |                      |                   |
|                   |                                   | Review acid/base                                                      |                        |                      |                   |
| The law of        | Framework Concept:                | nomenclature                                                          |                        |                      |                   |
| conservation of   | The fact that atoms are           | Predict the products of                                               |                        |                      |                   |
| mass will be      | conserved, together with          | acid/base neutralization                                              |                        |                      |                   |
| explored by       | knowledge of chemical             | Strong vs weak acids and                                              |                        |                      |                   |
| balancing         | properties of the elements        | bases                                                                 |                        |                      |                   |
| •                 | involved, can be used to          | The pH scale                                                          |                        |                      |                   |
| chemical          | describe and predict chemical     |                                                                       |                        |                      |                   |
| equations, and    | reactions and calculate           | Lab Experiments:                                                      |                        |                      |                   |
| relating the      | quantities of reactants and       |                                                                       |                        |                      |                   |
| corresponding     | products.                         | Conservation of mass                                                  |                        |                      |                   |
| chemical          |                                   | revisited- inquiry                                                    |                        |                      |                   |
| reactions. Acids  | Framework Concept:                | Reaction in a bag revisited-                                          |                        |                      |                   |
| and bases will be | Acids and bases are identified    | inquiry                                                               |                        |                      |                   |
| discussed,        | by their characteristics and      | Tests to identify O <sub>2</sub> , H <sub>2</sub> , CO <sub>2</sub> , |                        |                      |                   |
| ŕ                 | interactions. pH scale is a log   | and H <sub>2</sub> O- inquiry                                         |                        |                      |                   |
| followed by the   | scale that reflects the           | What gas is it? Al + CuCl <sub>2</sub> -                              |                        |                      |                   |
| first attempts to | concentration of protons in a     | inquiry                                                               |                        |                      |                   |
| predict chemical  | solution.                         | Balancing reactions bead                                              |                        |                      |                   |
| reactions:        | Solution.                         | activity The pure scale and                                           |                        |                      |                   |
| neutralizations.  | PA Academic Standards:            | The pH scale and neutralizations.                                     |                        |                      |                   |
|                   | Science                           | incuti diizations.                                                    |                        |                      |                   |
| MODULE B—The      | 3.1.10.E: Describe patterns of    |                                                                       |                        |                      |                   |
| Mole Concept      | change in nature, physical and    | Eligible Content:                                                     |                        |                      |                   |
| and Chemical      | man-made systems.                 | CHEM.B.2.1.4 Predict                                                  |                        |                      |                   |
|                   | Describe how fundamental          | products of simple chemical                                           |                        |                      |                   |
| Interactions      | science and technology concepts   | reactions (e.g., synthesis,                                           |                        |                      |                   |

|                   |                                                   | Curriculum Guide                    |  |
|-------------------|---------------------------------------------------|-------------------------------------|--|
| Framework Big     | are used to solve practical                       | decomposition, single               |  |
| dea: Matter can   | problems (e.g., conservation of                   | replacement, double                 |  |
| e understood in   | mass and energy, atomic theory,                   | replacement, combustion).           |  |
| terms of the      | gas laws, feedback systems).                      |                                     |  |
| types of atoms    | Describe the effects of error in<br>measurements. | CHEM.B.2.1.5 Balance                |  |
| present and the   | measurements.                                     | chemical equations by               |  |
| •                 | 3.4.10.A: Explain concepts about                  | applying the Law of                 |  |
| interactions both | the structure and properties of                   | Conservation of Matter.             |  |
| between and       | matter.                                           | Superior and Comment and a superior |  |
| within atoms.     | Describe various types of                         | Framework Competency:               |  |
|                   | chemical reactions by applying                    | Develop and use models to           |  |
|                   | the laws of conservation of mass                  | explain that atoms (and             |  |
|                   | and energy.                                       | therefore mass) are                 |  |
|                   |                                                   | conserved during a chemical         |  |
|                   | PA Core Standards:                                | reaction. Models can include        |  |
|                   | Reading for Science and Technical Subjects, 6-12  | computer models, ball and           |  |
|                   | 3.5 Reading Informational Text                    | stick models, and drawings.         |  |
|                   | Students read, understand, and                    | otion models, and aratimger         |  |
|                   | respond to informational text-                    | Framework Competency:               |  |
|                   | with emphasis on comprehension,                   | Using models, differentiate         |  |
|                   | making connections among ideas                    | between acid and bases and          |  |
|                   | and between texts with focus on                   |                                     |  |
|                   | textual evidence.                                 | acid-base systems.                  |  |
|                   |                                                   |                                     |  |
|                   | PA Core Standards: Writing for                    | Vocabulary:                         |  |
|                   | Science and Technical Subjects,                   | Balance                             |  |

**Chemistry Academic** Page 20

рΗ

Mole ratio

**Products** 

Reactants

Proton

Neutralization

6-12

3.6 Writing

content.

Students write for different

perspective and appropriate

Students write clear and focused text to convey a well-defined

purposes and audiences.

| General Topic       | Anchor Descriptor                | Eligible Content,             | Resources & Activities | Assessments          | Suggested    |
|---------------------|----------------------------------|-------------------------------|------------------------|----------------------|--------------|
|                     | PA Academic and Core             | Essential Knowledge,          |                        |                      | Time         |
|                     | Standards                        | Skills & Vocabulary           |                        |                      | (In Days)    |
| Predicting          | Anchor Descriptor                | Essential Knowledge/Skills:   | Teacher prepared       | Teacher prepared     | 9 days and 6 |
| products            | CHEM.A.1.2 Compare the           | The 5 types of reactions      |                        | tests, quizzes, etc. | days for net |
|                     | properties of mixtures.          | Reactions with water          |                        |                      | ionic        |
| Predicting the      |                                  | Anhydrides                    |                        |                      | equations    |
| products of a       | CHEM.B.2.1 Predict what          | The activity series           |                        |                      |              |
| chemical reaction   | happens during a chemical        | The solubility rules          |                        |                      |              |
| will now be         | reaction.                        | Precipitates                  |                        |                      |              |
| accomplished by     |                                  | Classifying electrolytes      |                        |                      |              |
| learning the five   | Framework Concept:               | Molecular to Ionic to Net     |                        |                      |              |
| types of            | The fact that atoms are          | ionic reactions.              |                        |                      |              |
| reactions.          | conserved, together with         |                               |                        |                      |              |
| Followed by a       | knowledge of chemical            | Lab Experiments:              |                        |                      |              |
| mini-unit on net    | properties of the elements       |                               |                        |                      |              |
| ionic equations.    | involved, can be used to         | Exploring the five types of   |                        |                      |              |
|                     | describe and predict chemical    | reactions                     |                        |                      |              |
| MODULE B—The        | reactions and calculate          | Precipitate lab               |                        |                      |              |
| <b>Mole Concept</b> | quantities of reactants and      | Making an activity series     |                        |                      |              |
| and Chemical        | products.                        | Electrolyte?                  |                        |                      |              |
| Interactions        |                                  |                               |                        |                      |              |
|                     | PA Academic Standards:           | Eligible Content:             |                        |                      |              |
| Framework Big       | Science                          | CHEM.A.1.2.1 Compare          |                        |                      |              |
| •                   | 3.4.10.A: Explain concepts about | properties of solutions       |                        |                      |              |
| Idea: Matter can    | the structure and properties of  | containing ionic or molecular |                        |                      |              |
| be understood in    | matter.                          | solutes (e.g., dissolving,    |                        |                      |              |
| terms of the        | Describe various types of        | dissociating).                |                        |                      |              |
| types of atoms      | chemical reactions by applying   |                               |                        |                      |              |
| present and the     | the laws of conservation of mass | CHEM.B.2.1.3 Classify         |                        |                      |              |
| interactions both   | and energy.                      | reactions as synthesis,       |                        |                      |              |
| between and         | DA Cana Standandar               | decomposition, single         |                        |                      |              |
| DC CVV CEIT ATTU    | PA Core Standards:               | replacement, double           |                        |                      |              |

|               |                                                                | 1                            |      | <br>Т |
|---------------|----------------------------------------------------------------|------------------------------|------|-------|
| within atoms. | Reading for Science and                                        | replacement, or combustion.  | <br> |       |
|               | Technical Subjects, 6-12                                       | _                            | <br> |       |
|               | 3.5 Reading Informational Text                                 | CHEM.B.2.1.4 Predict         | <br> |       |
|               | Students read, understand, and                                 | products of simple chemical  | <br> |       |
|               | respond to informational text-                                 | reactions (e.g., synthesis,  | <br> |       |
|               | with emphasis on comprehension, making connections among ideas | decomposition, single        | <br> |       |
|               | and between texts with focus on                                | replacement, double          | <br> |       |
|               | textual evidence.                                              | replacement, combustion).    | <br> |       |
|               | DA Core Standards Muiting for                                  | CHEM.B.2.1.5 Balance         | <br> |       |
|               | PA Core Standards: Writing for Science and Technical Subjects, | chemical equations by        | <br> |       |
|               | 6-12                                                           | applying the Law of          | <br> |       |
|               | 3.6 Writing                                                    | Conservation of Matter.      | <br> |       |
|               | Students write for different                                   | Framework Competency:        |      |       |
|               | purposes and audiences. Students write clear and focused       | Develop and use models to    | <br> |       |
|               | text to convey a well-defined                                  | explain that atoms (and      | <br> |       |
|               | perspective and appropriate                                    | therefore mass) are          | <br> |       |
|               | content.                                                       | conserved during a chemical  | <br> |       |
|               |                                                                | reaction. Models can include | <br> |       |
|               |                                                                | computer models, ball and    | <br> |       |
|               |                                                                | stick models, and drawings.  | <br> |       |
|               |                                                                |                              | <br> |       |
|               |                                                                | Vocabulary:                  | <br> |       |
|               |                                                                | Balance                      | <br> |       |
|               |                                                                | Chemical properties          | <br> |       |
|               |                                                                | Combustion                   | <br> |       |
|               |                                                                | Decomposition                | <br> |       |
|               |                                                                | Double replacement           | <br> |       |
|               |                                                                | Mole ratio                   | <br> |       |
|               |                                                                | Net ionic equations          | <br> |       |
|               |                                                                | Physical properties Products | <br> |       |
|               |                                                                | Reactants                    | <br> |       |
|               |                                                                |                              |      |       |

|  | Redox              |  |  |
|--|--------------------|--|--|
|  | Single replacement |  |  |
|  | Synthesis          |  |  |

| <b>General Topic</b> | Anchor Descriptor                | Eligible Content,                   | Resources & Activities | Assessments          | Suggested |
|----------------------|----------------------------------|-------------------------------------|------------------------|----------------------|-----------|
|                      | PA Academic and Core             | Essential Knowledge,                |                        |                      | Time      |
|                      | Standards                        | Skills & Vocabulary                 |                        |                      | (In Days) |
| Stoichiometry        | Anchor Descriptor                | Essential Knowledge/Skills:         | Teacher prepared       | Teacher prepared     | 10 days   |
|                      | CHEM.B.2.1 Predict what          | Stoichiometry of a balanced         |                        | tests, quizzes, etc. |           |
| The unit is a        | happens during a chemical        | reaction                            |                        |                      |           |
| culmination of all   | reaction.                        | Limiting reactants                  |                        |                      |           |
| of the work done     |                                  | Grams of an excess reactant         |                        |                      |           |
| since the start of   | CHEM.B.2.2 Explain how the       | left over                           |                        |                      |           |
| the course. A        | kinetic molecular theory relates | % yield                             |                        |                      |           |
| quantitative look    | to the behavior of gases.        |                                     |                        |                      |           |
| at chemical          |                                  | Lab Experiments:                    |                        |                      |           |
| reactions will       | Framework Concept:               |                                     |                        |                      |           |
| encompass units      | The fact that atoms are          | Intro to stoichiometry-             |                        |                      |           |
| one to six.          | conserved, together with         | inquiry                             |                        |                      |           |
|                      | knowledge of chemical            | Finding stoichiometric              |                        |                      |           |
| MODULE B—The         | properties of the elements       | equivalents                         |                        |                      |           |
| Mole Concept         | involved, can be used to         | Limiting reactant lab               |                        |                      |           |
| and Chemical         | describe and predict chemical    | % yield lab                         |                        |                      |           |
| Interactions         | reactions and calculate          | Sodium carbonate                    |                        |                      |           |
| interactions         | quantities of reactants and      | production study- inquiry           |                        |                      |           |
|                      | products.                        | % of CO <sub>2</sub> in a carbonate |                        |                      |           |
| Framework Big        |                                  |                                     |                        |                      |           |
| Idea: Matter can     | Framework Concept:               | Eligible Content                    |                        |                      |           |
| be understood in     | The mole, as a fundamental       | CHEM.B.2.1.1 Describe the           |                        |                      |           |
| terms of the         | unit, is used to represent a     | roles of limiting and excess        |                        |                      |           |
| types of atoms       | specific quantity of atomic      | reactants in chemical               |                        |                      |           |
| present and the      | particles such as atoms, ions,   | reactions.                          |                        |                      |           |
| interactions both    | formula units, and molecules.    |                                     |                        |                      |           |
|                      |                                  | CHEM.B.2.1.2 Use                    |                        |                      |           |
| between and          | PA Academic Standards:           | stoichiometric relationships        |                        |                      |           |
| within atoms.        | Science                          | to calculate the amounts of         |                        |                      |           |
|                      | N/A                              | reactants and products              |                        |                      |           |

|                                                                   | Carricalani Calac            |  |  |
|-------------------------------------------------------------------|------------------------------|--|--|
| PA Core Standards:                                                | involved in a chemical       |  |  |
| Reading for Science and                                           | reaction.                    |  |  |
| Technical Subjects, 6-12                                          |                              |  |  |
| 3.5 Reading Informational Text                                    | Framework Competency:        |  |  |
| Students read, understand, and                                    | Develop and use models to    |  |  |
| respond to informational text-<br>with emphasis on comprehension, | explain that atoms (and      |  |  |
| making connections among ideas                                    | therefore mass) are          |  |  |
| and between texts with focus on                                   | conserved during a chemical  |  |  |
| textual evidence.                                                 | reaction. Models can include |  |  |
|                                                                   | computer models, ball and    |  |  |
| PA Core Standards: Writing for                                    | stick models, and drawings.  |  |  |
| Science and Technical Subjects,                                   | -                            |  |  |
| 6-12                                                              | Vocabulary:                  |  |  |
| 3.6 Writing Students write for different                          | Balance                      |  |  |
| purposes and audiences.                                           | Mole ratio                   |  |  |
| Students write clear and focused                                  | Products                     |  |  |
| text to convey a well-defined                                     | Reactants                    |  |  |
| perspective and appropriate                                       |                              |  |  |
| content.                                                          |                              |  |  |

| General Topic         | Anchor Descriptor                 | Eligible Content,            | Resources & Activities | Assessments          | Suggested |
|-----------------------|-----------------------------------|------------------------------|------------------------|----------------------|-----------|
|                       | PA Academic and Core              | Essential Knowledge,         |                        |                      | Time      |
|                       | Standards                         | Skills & Vocabulary          |                        |                      | (In Days) |
| Atomic Theory         | <b>Anchor Descriptors:</b>        | Essential Knowledge/Skills:  | Teacher prepared       | Teacher prepared     | 10 days   |
| Part I                | CHEM.A.1.1 Identify and           | Concentration units of       |                        | tests, quizzes, etc. |           |
|                       | describe how observable and       | molality, mass percent, mole |                        |                      |           |
| A mini-unit on        | measurable properties can be      | fraction                     |                        |                      |           |
| colligative           | used to classify and describe     | Freezing point depression    |                        |                      |           |
| properties            | matter and energy.                | Boiling point elevation      |                        |                      |           |
| introduces this       |                                   | History of atom from the     |                        |                      |           |
| unit, since at this   | CHEM.A.1.2 Compare the            | Greeks to today              |                        |                      |           |
| time of the year      | properties of mixtures.           | Dalton's atomic theory and   |                        |                      |           |
| icing on sidewalks    |                                   | its revisions                |                        |                      |           |
| is a problem.         | CHEM.A.2.1 Explain how atomic     | Protons, electrons, and      |                        |                      |           |
| Then the              | theory serves as the basis for    | neutrons                     |                        |                      |           |
| scientists and        | the study of matter.              | How are ions formed?         |                        |                      |           |
| discoveries that      |                                   | Isotopes                     |                        |                      |           |
| led to our current    | CHEM.A.2.2 Describe the           | The atomic models            |                        |                      |           |
| atomic model are      | behavior of electrons in atoms.   | The quantum theory           |                        |                      |           |
| studied.              |                                   | Bohr's model                 |                        |                      |           |
|                       | CHEM.A.2.3 Explain how            | Schrodinger's equation       |                        |                      |           |
| MODULE A—             | periodic trends in the properties | Electron configurations and  |                        |                      |           |
| Structure and         | of atoms allow for the            | the periodic table           |                        |                      |           |
| Properties of         | prediction of physical and        | Orbital notations and dot    |                        |                      |           |
| Matter                | chemical properties.              | diagrams                     |                        |                      |           |
| Widte                 |                                   | Hund's rule                  |                        |                      |           |
|                       | Framework Concept:                |                              |                        |                      |           |
| Framework Big         | Stable forms of matter are        | Lab Experiments:             |                        |                      |           |
| Idea: Matter can      | those in which the electric       |                              |                        |                      |           |
| be understood in      | potential energy is minimized.    | Freezing point depression    |                        |                      |           |
| terms of the          | Personal energy is imminized.     | Boiling point elevation      |                        |                      |           |
| types of atoms        | F                                 | What is the law of multiple  |                        |                      |           |
| present and the       | Framework Concept:                | proportions?- inquiry        |                        |                      |           |
| interactions both     | Each atom has a charged           | Gold foil simulation         |                        |                      |           |
| ווונפו מננוטווא טטנוו | substructure consisting of a      | Atomic map                   |                        |                      |           |

|               |                                  | Curriculum Guide                                          |  |  |
|---------------|----------------------------------|-----------------------------------------------------------|--|--|
| between and   | nucleus, which is made of        | What is an isotope?— inquiry                              |  |  |
| within atoms. | protons and neutrons,            | Isotope- beanium                                          |  |  |
|               | surrounded by electrons. The     |                                                           |  |  |
|               | periodic table orders elements   | Eligible Content:                                         |  |  |
|               | in increasing number of protons  | CHEM.A.1.1.4                                              |  |  |
|               | and places those with similar    | Relate the physical properties of matter to its atomic or |  |  |
|               | chemical properties in columns.  | molecular structure.                                      |  |  |
|               | one mean proper tree in columns. | morecular structure.                                      |  |  |
|               | Framework Concept:               | CHEM.A.1.2.4 Describe                                     |  |  |
|               | Each atom has a charged          | various ways that                                         |  |  |
|               | substructure consisting of a     | concentration can be                                      |  |  |
|               | nucleus, which is made of        | expressed and calculated                                  |  |  |
|               | protons and neutrons, and        | (e.g., molarity, percent by                               |  |  |
|               | surrounding electrons.           | mass, percent by volume).                                 |  |  |
|               | Surrounding crossrons:           | CHEM.A.2.1.1 Describe the                                 |  |  |
|               | Framework Concept:               | evolution of atomic theory                                |  |  |
|               | The structure and interactions   | leading to the current model                              |  |  |
|               | of matter at the bulk scale are  | of the atom based on the                                  |  |  |
|               |                                  | works of Dalton, Thomson,                                 |  |  |
|               | determined by electrical forces  | Rutherford, and Bohr.                                     |  |  |
|               | within and between atoms.        |                                                           |  |  |
|               | Properties of chemical           | CHEM.A.2.1.2 Differentiate                                |  |  |
|               | compounds are related to         | between the mass number of                                |  |  |
|               | electrostatic interaction        | an isotope and the average atomic mass of an element.     |  |  |
|               | between particles.               | atomic mass of an element.                                |  |  |
|               | DA Acadomio Standarda            | CHEM.A.2.2.1 Predict the                                  |  |  |
|               | PA Academic Standards: Science   | ground state electronic                                   |  |  |
|               | 3.1.10.E: Describe patterns of   | configuration and/or orbital                              |  |  |
|               | change in nature, physical and   | diagram for a given atom or                               |  |  |
|               | man-made systems.                | ion.                                                      |  |  |
|               | Describe how fundamental         | CUENA A 2 2 2 Due diet                                    |  |  |
|               | science and technology           | CHEM.A.2.2.2 Predict                                      |  |  |

| concepts are used to solve                        | characteristics of an atom or   |  |  |
|---------------------------------------------------|---------------------------------|--|--|
| practical problems (e.g., atomic                  | an ion based on its location    |  |  |
| theory).                                          | on the periodic table           |  |  |
|                                                   | (e.g., number of valence        |  |  |
| 3.4.10.A: Explain concepts about                  | electrons, potential types of   |  |  |
| the structure and properties of                   | bonds, reactivity).             |  |  |
| matter.                                           |                                 |  |  |
| <ul> <li>Know that atoms are</li> </ul>           | CHEM.A.2.2.3 Explain the        |  |  |
| composed of even smaller sub-                     | relationship between the        |  |  |
| atomic structures whose                           | electron configuration and      |  |  |
| properties are measurable.                        | the atomic structure of a       |  |  |
|                                                   | given atom or ion (e.g.,        |  |  |
| 3.4.10.C: Distinguish among the                   | energy levels and/or orbitals   |  |  |
| principles of force and motion.                   | with electrons, distribution of |  |  |
| <ul> <li>Describe light effects (e.g.,</li> </ul> | electrons in orbitals, shapes   |  |  |
| absorption, emission spectra,                     | of orbitals).                   |  |  |
| polarization, interference).                      |                                 |  |  |
| <ul> <li>Describe and measure the</li> </ul>      | CHEM.A.2.2.4 Relate the         |  |  |
| motion of sound, light and other                  | existence of quantized          |  |  |
| objects.                                          | energy levels to atomic         |  |  |
|                                                   | emission spectra.               |  |  |
| PA Core Standards:                                |                                 |  |  |
| Reading for Science and                           | CHEM.A.2.3.1 Explain how        |  |  |
| Technical Subjects, 6-12                          | the periodicity of chemical     |  |  |
| 3.5 Reading Informational Text                    | properties led to the           |  |  |
| Students read, understand, and                    | arrangement of elements on      |  |  |
| respond to informational text-                    | the periodic table.             |  |  |
| with emphasis on                                  | Framework Competency:           |  |  |
| comprehension, making                             | Construct models showing        |  |  |
| connections among ideas and                       | that stable forms of matter     |  |  |
| between texts with focus on                       | are those with minimum          |  |  |
| textual evidence.                                 | electrical field energy.        |  |  |
| DA Considerate to the second                      |                                 |  |  |
| PA Core Standards: Writing for                    | Framowork Compatons             |  |  |
| <br>Science and Technical Subjects,               | Framework Competency:           |  |  |

|                                                         | Curriculum Guide                | 1 | , , |
|---------------------------------------------------------|---------------------------------|---|-----|
| 6-12                                                    | Use the atomic model and        |   |     |
| 3.6 Writing                                             | the periodic table to predict   |   |     |
| Students write for different                            | and explain trends in           |   |     |
| purposes and audiences. Students write clear and focuse | properties of elements.         |   |     |
| text to convey a well-defined                           | u                               |   |     |
| perspective and appropriate                             | Framework Competency:           |   |     |
| content.                                                | Develop a model showing the     |   |     |
|                                                         | likely position of electrons as |   |     |
|                                                         | determined by the quantized     |   |     |
|                                                         | energy levels of atoms.         |   |     |
|                                                         |                                 |   |     |
|                                                         | Framework Competency:           |   |     |
|                                                         | Analyze and interpret data      |   |     |
|                                                         | obtained from measuring the     |   |     |
|                                                         | bulk properties of various      |   |     |
|                                                         | substances to explain the       |   |     |
|                                                         | relative strength of the        |   |     |
|                                                         | interactions among particles    |   |     |
|                                                         | in the substance.               |   |     |
|                                                         |                                 |   |     |
|                                                         | Vocabulary:                     |   |     |
|                                                         | Geometries and orbital          |   |     |
|                                                         | shapes                          |   |     |
|                                                         | Lewis dot structures            |   |     |
|                                                         | Molecular                       |   |     |
|                                                         | Octet rule                      |   |     |
|                                                         | Configuration                   |   |     |
|                                                         | Electrons                       |   |     |
|                                                         | Neutrons                        |   |     |
|                                                         | Nucleus                         |   |     |
|                                                         | Orbital diagram                 |   |     |

| Carricalani Galac |  |
|-------------------|--|
| Protons           |  |
| Subatomic         |  |
| Bohr              |  |
| Configuration     |  |
| Dalton            |  |
| Energy levels     |  |
| Excited state     |  |
| Ground state      |  |
| Orbitals          |  |
| Quantized         |  |
| Sublevels         |  |
| Rutherford        |  |
| Thomson           |  |
| Boiling Point     |  |
| Colligative       |  |
| Freezing Point    |  |
| Molality          |  |

| General Topic       | Anchor Descriptor                 | Eligible Content,            | Resources & Activities | Assessments          | Suggested   |
|---------------------|-----------------------------------|------------------------------|------------------------|----------------------|-------------|
|                     | PA Academic and Core              | Essential Knowledge,         |                        |                      | Time        |
|                     | Standards                         | Skills & Vocabulary          |                        |                      | (In Days)   |
| Coulomb's law,      | Anchor Descriptor                 | Essential Knowledge/Skills:  | Teacher prepared       | Teacher prepared     | 10 days and |
| the shell model,    | CHEM.A.2.2 Describe the           | Coulomb's law                |                        | tests, quizzes, etc. | 11 days     |
| and Atomic          | behavior of electrons in atoms.   | Ionization energy            |                        |                      |             |
| Theory Part II      |                                   | The shell model              |                        |                      |             |
|                     | CHEM.A.2.3 Explain how            | Sublevels                    |                        |                      |             |
| This unit begins    | periodic trends in the properties | Electron configurations      |                        |                      |             |
| with an in-depth,   | of atoms allow for the            | Photoelectron spectroscopy   |                        |                      |             |
| inquiry-based       | prediction of physical and        | Quantum numbers              |                        |                      |             |
| look at Coulomb's   | chemical properties.              | n, l, m and s                |                        |                      |             |
| law using Moog's    |                                   | Electromagnetic radiation    |                        |                      |             |
| text on inquiry. It | Framework Concept:                | The visible spectrum         |                        |                      |             |
| uses an analysis    | Stable forms of matter are        | Wavelength, frequency, and   |                        |                      |             |
| of ionization       | those in which the electric       | energy                       |                        |                      |             |
| energies to show    | potential energy is minimized.    | Bohr's model of the atom     |                        |                      |             |
| experimental        | Posterior energy to               | Bohr's equation              |                        |                      |             |
| proof of the shell  | Framework Concept:                | Electron transitions         |                        |                      |             |
| model of the        | Each atom has a charged           |                              |                        |                      |             |
| atom, culminating   |                                   | Lab Experiments:             |                        |                      |             |
| with                | substructure consisting of a      |                              |                        |                      |             |
| Photoelectron       | nucleus, which is made of         | Coulombic potential energy-  |                        |                      |             |
| Spectral analysis   | protons and neutrons, and         | inquiry                      |                        |                      |             |
| (PES), and          | surrounding electrons.            | The shell model- inquiry     |                        |                      |             |
| relating it to      |                                   | PES simulations- inquiry     |                        |                      |             |
| electron            | Framework Concept:                | Flame tests                  |                        |                      |             |
| configurations      | Coulomb's Law provides a          | Phet simulation- Neon lights |                        |                      |             |
| from the previous   | •                                 | and the Bohr model           |                        |                      |             |
| unit.               | mathematical model that           | Vision project               |                        |                      |             |
| Ougantum            | describes and predicts the        |                              |                        |                      |             |
| Quantum             | effect of electrostatic forces    | Flicible Contents            |                        |                      |             |
| numbers are         | acting between electrically       | Eligible Content:            |                        |                      |             |
| introduced,         | charged objects.                  | CHEM.A.2.2.1 Predict the     |                        |                      |             |
| relating to         | •                                 | ground state electronic      |                        |                      |             |

| electron configurations, Schrodinger's equation, and the electron cloud model.  Framework Concept:  The speed of a wave in any medium is the product of the wave's frequency and wavelength.  CHEM.A.2.2.2 Predict characteristics of an atom or an ion based on its location on the periodic table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Schrodinger's equation, and the electron cloud model.  Then the  medium is the product of the wave's frequency and wavelength.  CHEM.A.2.2.2 Predict characteristics of an atom or an ion based on its location on the periodic table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| equation, and the electron cloud model.  Then the  Then the  The product of the wave's frequency and wavelength.  Then the  The product of the wave's frequency and wavelength.  CHEM.A.2.2.2 Predict characteristics of an atom or an ion based on its location on the periodic table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| electron cloud model.  Wave s frequency and wavelength.  CHEM.A.2.2.2 Predict characteristics of an atom or an ion based on its location on the periodic table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
| model. characteristics of an atom or an ion based on its location on the periodic table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
| Then the Framework Concept: Characteristics of an atom of an ion based on its location on the periodic table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| Then the Framework Concept: on the periodic table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| electromegnetic   Floctromagnetic waves are   16 g number of Valence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| electromagnetic Electromagnetic waves are (e.g., number of valence electrons, potential types of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| honds reactivity)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| introduced, through a vacuum at the speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
| followed by a of light and have an energy that CHEM.A.2.2.3 Explain the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
| quantitative is directly proportional to the relationship between the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| analysis of the frequency of the wave. electron configuration and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| experimental     the atomic structure of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| data behind line PA Academic Standards: given atom or ion (e.g.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| spectra. This Science energy levels and/or orbitals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| 3.1.10.E: Describe patterns of with electrons, distribution of change in patterns and change in patterns of ch |   |
| calculations change in nature, physical and man-made systems. electrons in orbitals, shapes of orbitals).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
| involving:  • Describe how fundamental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| wavelength, science and technology CHEM.A.2.2.4 Relate the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| frequency, concepts are used to solve existence of quantized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| energy, changing practical problems (e.g., atomic energy levels to atomic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
| energy levels, theory). emission spectra.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
| ground state and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| 3.4.10.A: Explain concepts about CHEM.A.2.3.1 Explain now                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
| excited state the structure and properties of the periodicity of chemical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
| electron matter. properties led to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| • Know that atoms are arrangement of elements on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| composed of even smaller sub- the periodic table.  atomic structures whose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| proportion are measurable CHEM A 2.2.2 Compare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
| Structure and properties are measurable. CHEM.A.2.3.2 Compare and/or predict the properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| Properties of and/or predict the properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |

| Framework Big     |
|-------------------|
| Idea: Matter can  |
| be understood in  |
| terms of the      |
| types of atoms    |
| present and the   |
| interactions both |
| between and       |
| within atoms.     |
|                   |

Matter

Framework Big Idea: Interactions between any two objects can cause changes in one or both of them.

Framework Big
Idea: Waves are a
repeating pattern
of motion that
transfers energy
from place to
place without
overall
displacement of
matter.

3.4.10.C: Distinguish among the principles of force and motion.

- Describe light effects (e.g., absorption, emission spectra, polarization, interference).
- Describe and measure the motion of sound, light and other objects.

### PA Core Standards: Reading for Science and Technical Subjects, 6-12

3.5 Reading Informational Text Students read, understand, and respond to informational textwith emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.

# PA Core Standards: Writing for Science and Technical Subjects, 6-12

3.6 Writing
Students write for different
purposes and audiences.
Students write clear and focused
text to convey a well-defined
perspective and appropriate
content.

(e.g., electron affinity, ionization energy, chemical reactivity, electronegativity, atomic radius) of selected elements by using their locations on the periodic table and known trends.

#### **Framework Competency:**

Construct models showing that stable forms of matter are those with minimum electrical field energy.

#### **Framework Competency:**

Develop a model showing the likely position of electrons as determined by the quantized energy levels of atoms.

#### Framework Competency:

Use mathematical representations of Coulomb's Law to describe and predict the electrostatic forces between objects.

#### **Framework Competency:**

Analyze and interpret data to support the claim that the speed of a wave in a medium is the product of the wave's

| 1 |                               |  |  |
|---|-------------------------------|--|--|
|   | frequency and the wave's      |  |  |
|   | wavelength.                   |  |  |
|   |                               |  |  |
|   | Framework Competency:         |  |  |
|   | Evaluate the claims,          |  |  |
|   | evidence, and reasoning       |  |  |
|   | behind the idea that          |  |  |
|   | electromagnetic radiation     |  |  |
|   | can be described either by a  |  |  |
|   | wave model or a particle      |  |  |
|   | model, and that for some      |  |  |
|   | situations one model is more  |  |  |
|   | useful than the other.        |  |  |
|   |                               |  |  |
|   | Framework Competency:         |  |  |
|   | Generate and analyze data to  |  |  |
|   | support the claim that the    |  |  |
|   | energy of an electromagnetic  |  |  |
|   | wave is directly proportional |  |  |
|   | to the frequency of the wave. |  |  |
|   | , ,                           |  |  |
|   | Vocabulary:                   |  |  |
|   | Coulomb's Law                 |  |  |
|   | Bohr                          |  |  |
|   | Configuration                 |  |  |
|   | Dalton                        |  |  |
|   | Electronic                    |  |  |
|   | Emission                      |  |  |
|   | Energy levels                 |  |  |
|   | Excited state                 |  |  |
|   | Ground state                  |  |  |
|   |                               |  |  |

| Orbitals             |  |
|----------------------|--|
| Quantized            |  |
| Sublevels            |  |
| Rutherford           |  |
| Spectra              |  |
| Thomson              |  |
| Electrostatic force  |  |
| Medium               |  |
| Frequency            |  |
| Wave                 |  |
| Wavelength           |  |
| Electromagnetic wave |  |
| Particle model       |  |
| Photon               |  |
| Wave model           |  |
| Frequency            |  |
| Proportional         |  |

| General Topic       | Anchor Descriptor                                 | Eligible Content,                                          | Resources & Activities | Assessments          | Suggested |
|---------------------|---------------------------------------------------|------------------------------------------------------------|------------------------|----------------------|-----------|
|                     | PA Academic and Core                              | Essential Knowledge,                                       |                        |                      | Time      |
|                     | Standards                                         | Skills & Vocabulary                                        |                        |                      | (In Days) |
| Periodic trends     | Anchor Descriptor                                 | Essential Knowledge/Skills:                                | Teacher prepared       | Teacher prepared     | 13 days   |
|                     | CHEM.A.2.2 Describe the                           | Trends                                                     |                        | tests, quizzes, etc. |           |
| Using the periodic  | behavior of electrons in atoms.                   | Element uses                                               |                        |                      |           |
| table as tool to    |                                                   | Further investigating the                                  |                        |                      |           |
| find trends in      | CHEM.A.2.3 Explain how                            | table                                                      |                        |                      |           |
| atomic radius,      | periodic trends in the properties                 | Lab Everagina auto.                                        |                        |                      |           |
| electronegativity,  | of atoms allow for the prediction of physical and | Lab Experiments:                                           |                        |                      |           |
| electron affinity,  | chemical properties.                              | Periodic table activities # 1-5                            |                        |                      |           |
| ionization energy,  | chemical properties.                              | remodic table activities # 1-3                             |                        |                      |           |
| oxidation state,    | Framework Concept:                                | Eligible Content:                                          |                        |                      |           |
| and various other   | Each atom has a charged                           | CHEM.A.2.2.2 Predict                                       |                        |                      |           |
| properties. The     | substructure consisting of a                      | characteristics of an atom or                              |                        |                      |           |
| properties are      | nucleus, which is made of                         | an ion based on its location                               |                        |                      |           |
| used to construct   | protons and neutrons,                             | on the periodic table                                      |                        |                      |           |
| various periodic    | surrounded by electrons. The                      | (e.g., number of valence                                   |                        |                      |           |
| table puzzles, as   | periodic table orders elements                    | electrons, potential types of bonds, reactivity).          |                        |                      |           |
| well as to identify | in increasing number of protons                   | bonds, reactivity).                                        |                        |                      |           |
| common uses for     | and places those with similar                     | CHEM.A.2.3.1 Explain how                                   |                        |                      |           |
| elements and        | chemical properties in columns.                   | the periodicity of chemical                                |                        |                      |           |
|                     | chemical properties in columns.                   | properties led to the                                      |                        |                      |           |
| element families.   | PA Academic Standards:                            | arrangement of elements on                                 |                        |                      |           |
| MACDINE A 4         | Science                                           | the periodic table.                                        |                        |                      |           |
| MODULE A.1—         | 3.1.10.C: Apply patterns as                       |                                                            |                        |                      |           |
| Structure and       | repeated processes or recurring                   | CHEM.A.2.3.2 Compare                                       |                        |                      |           |
| Properties of       | elements in science and                           | and/or predict the properties                              |                        |                      |           |
| Matter              | technology.                                       | (e.g., electron affinity,                                  |                        |                      |           |
|                     | Examine and describe                              | ionization energy, chemical reactivity, electronegativity, |                        |                      |           |
| Framework Big       | recurring patterns that form the                  | atomic radius) of selected                                 |                        |                      |           |
| Idea: Matter can    | basis of chemical periodicity.                    | elements by using their                                    |                        |                      |           |
|                     |                                                   | ciements by using their                                    |                        |                      |           |

|                   |                                                                                                                                                                                                                                                                                                                                                                    | Curriculum Guide                                                                                                                                                                                     |  |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| be understood in  | 3.4.10.A: Explain concepts about                                                                                                                                                                                                                                                                                                                                   | locations on the periodic                                                                                                                                                                            |  |  |
| terms of the      | the structure and properties of                                                                                                                                                                                                                                                                                                                                    | table and known trends.                                                                                                                                                                              |  |  |
| types of atoms    | matter.                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                      |  |  |
| present and the   | Explain the repeating pattern                                                                                                                                                                                                                                                                                                                                      | Framework Competency:                                                                                                                                                                                |  |  |
| interactions both | of chemical properties by using                                                                                                                                                                                                                                                                                                                                    | Use the atomic model and                                                                                                                                                                             |  |  |
| between and       | the repeating patterns of atomic                                                                                                                                                                                                                                                                                                                                   | the periodic table to predict                                                                                                                                                                        |  |  |
| within atoms.     | structure within the periodic                                                                                                                                                                                                                                                                                                                                      | and explain trends in                                                                                                                                                                                |  |  |
| within atoms.     | table.                                                                                                                                                                                                                                                                                                                                                             | properties of elements.                                                                                                                                                                              |  |  |
|                   | PA Core Standards: Reading for Science and Technical Subjects, 6-12 3.5 Reading Informational Text Students read, understand, and respond to informational text- with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.  PA Core Standards: Writing for Science and Technical Subjects, 6-12 3.6 Writing | Vocabulary: Atomic radius Charge Chemical Configuration Effective nuclear charge Electron affinity Electronegativity Electrons Elements Energy Ionization Neutrons Nucleus Orbital diagram Particles |  |  |
|                   | Students write for different                                                                                                                                                                                                                                                                                                                                       | Physical properties Protons                                                                                                                                                                          |  |  |
|                   | purposes and audiences.                                                                                                                                                                                                                                                                                                                                            | Reactivity                                                                                                                                                                                           |  |  |
|                   | Students write clear and focused                                                                                                                                                                                                                                                                                                                                   | Shielding effect                                                                                                                                                                                     |  |  |
|                   | text to convey a well-defined perspective and appropriate content.                                                                                                                                                                                                                                                                                                 | Subatomic                                                                                                                                                                                            |  |  |

| General Topic       | Anchor Descriptor                     | Eligible Content,                   | Resources & Activities | Assessments          | Suggested |
|---------------------|---------------------------------------|-------------------------------------|------------------------|----------------------|-----------|
|                     | PA Academic and Core                  | Essential Knowledge,                |                        |                      | Time      |
|                     | Standards                             | Skills & Vocabulary                 |                        |                      | (In Days) |
| Introduction to     | Anchor Descriptor                     | Essential Knowledge/Skills:         | Teacher prepared       | Teacher prepared     | 11 days   |
| Bonding             | CHEM.A.1.2 Compare the                | Differences in                      |                        | tests, quizzes, etc. |           |
|                     | properties of mixtures.               | electronegativity                   |                        |                      |           |
| This unit expands   |                                       | Ionic vs covalent bonding           |                        |                      |           |
| on past             | CHEM.B.1.3 Explain how atoms          | Polar covalent bonds vs polar       |                        |                      |           |
| investigations      | form chemical bonds.                  | molecules                           |                        |                      |           |
| into the atom,      |                                       | Molecular motions                   |                        |                      |           |
| specifically how    | CHEM.B.1.4 Explain how models         | Drawing Lewis structures            |                        |                      |           |
| atoms interact to   | can be used to represent              | Limitations of the VSEPR            |                        |                      |           |
| form compounds.     | bonding.                              | theory                              |                        |                      |           |
| •                   | 5                                     | Geometry and bond angles            |                        |                      |           |
| Electronegativity   | Framework Concept:                    | Predicting polarity                 |                        |                      |           |
| is the focus of the | Stable forms of matter are            | Drawing 3-dimensional shapes        |                        |                      |           |
| discussion.         | those in which the electric           | Resonance                           |                        |                      |           |
| Molecular           | potential energy is minimized.        | Calculating formal charge           |                        |                      |           |
| geometry, 3-        |                                       | carearding formal charge            |                        |                      |           |
| dimensional         | Framework Concept:                    | Lab Experiments:                    |                        |                      |           |
| shapes, and         | Properties of chemical                | ·                                   |                        |                      |           |
| ultimately          | compounds are related to              | Creating molecular models #         |                        |                      |           |
| polarity are        | electrostatic interaction             | 1-4                                 |                        |                      |           |
| explored through    | between particles.                    | Testing bond properties             |                        |                      |           |
| the drawing of      |                                       | Identifying ionic vs covalent bonds |                        |                      |           |
| Lewis structures.   | Framework Concept:                    | Making an alloy                     |                        |                      |           |
| The unit ends       | The structure and interactions        | Shape and polyatomic ions-          |                        |                      |           |
| with a discussion   | of matter at the bulk scale are       | inquiry                             |                        |                      |           |
| of formal charge    | determined by electrical forces       |                                     |                        |                      |           |
| to evaluate the     | within and between atoms.             | Eligible Content:                   |                        |                      |           |
| concept of          | Properties of chemical                | CHEM.A.1.2.3 Describe how           |                        |                      |           |
| •                   | · · · · · · · · · · · · · · · · · · · | 1                                   |                        | 1                    |           |

| resonance.        | compounds are related to                               | factors (e.g., temperature,   |  |  |
|-------------------|--------------------------------------------------------|-------------------------------|--|--|
| resonance.        | · ·                                                    | concentration, surface area)  |  |  |
| 140DUUE 1         | electrostatic interaction                              | can affect solubility.        |  |  |
| MODULE A—         | between particles.                                     | can affect solubility.        |  |  |
| Properties and    |                                                        | CHEM.A.1.2.5 Describe how     |  |  |
| Classification of | PA Academic Standards:                                 | chemical bonding can affect   |  |  |
| Matter            | Science                                                | whether a substance           |  |  |
|                   |                                                        | dissolves in a given liquid.  |  |  |
| MODULE B— The     | 3.4.10.A: Explain concepts about                       | grand grant quan              |  |  |
| Mole and          | the structure and properties of                        | CHEM.B.1.3.1 Explain how      |  |  |
| Chemical          | matter.                                                | atoms combine to form         |  |  |
| Interactions      | Explain the formation of                               | compounds through ionic       |  |  |
| interactions      | compounds and their resulting properties using bonding | and covalent bonding.         |  |  |
|                   | theories (ionic and covalent).                         |                               |  |  |
| Framework Big     | theories (lottic and covalent).                        | CHEM.B.1.3.2 Classify a bond  |  |  |
| Idea: Matter can  | PA Core Standards:                                     | as being polar covalent, non- |  |  |
| be understood in  | Reading for Science and                                | polar covalent, or ionic.     |  |  |
| terms of the      | Technical Subjects, 6-12                               |                               |  |  |
| types of atoms    | 3.5 Reading Informational Text                         | CHEM.B.1.3.3 Use              |  |  |
| present and the   | Students read, understand, and                         | illustrations to predict the  |  |  |
| interactions both | respond to informational text-                         | polarity of a molecule.       |  |  |
| between and       | with emphasis on comprehension,                        | <b>5</b>                      |  |  |
| within atoms.     | making connections among ideas                         | Framework Competency:         |  |  |
| within atoms.     | and between texts with focus on                        | Construct models showing      |  |  |
|                   | textual evidence.                                      | that stable forms of matter   |  |  |
|                   | PA Core Standards: Writing for                         | are those with minimum        |  |  |
|                   | Science and Technical Subjects,                        | electrical field energy.      |  |  |
|                   | 6-12                                                   |                               |  |  |
|                   | 3.6 Writing                                            | Framework Competency:         |  |  |
|                   | Students write for different                           | Use Lewis Structures and      |  |  |
|                   | purposes and audiences.                                | VSEPR to predict and explain  |  |  |
|                   | Students write clear and focused                       | charge distribution across a  |  |  |
|                   | text to convey a well-defined                          |                               |  |  |
|                   | perspective and appropriate                            | particle (atom, ion, molecule |  |  |
|                   | content.                                               | or formula unit).             |  |  |

| Framework Competency:        |
|------------------------------|
| Analyze and interpret data   |
| obtained from measuring the  |
| bulk properties of various   |
| substances to explain the    |
| relative strength of the     |
| interactions among particles |
| in the substance.            |
|                              |
| Vocabulary:                  |
| Geometries and orbital       |
| shapes                       |
| Lewis dot structures         |
| Molecular                    |
| Octet rule                   |
| Atoms                        |
| Covalent bond                |
| Electronegativity scale      |
| lons                         |
| Ionic Bond                   |
| Metallic Bonding             |
| Molecules                    |
| Polarity                     |
| VSEPR/shape Boiling point    |
| Bonding                      |
|                              |
| Dispersion Forces            |
| Freezing point               |
| Hydrogen                     |
| Intermolecular               |
| "Like dissolves like"        |

|  | London         |  |  |
|--|----------------|--|--|
|  | Van der Waals  |  |  |
|  | Melting point  |  |  |
|  | Polarity       |  |  |
|  | Vapor pressure |  |  |
|  |                |  |  |
|  |                |  |  |
|  |                |  |  |
|  |                |  |  |
|  |                |  |  |
|  |                |  |  |
|  |                |  |  |
|  |                |  |  |
|  |                |  |  |
|  |                |  |  |

| General Topic      | Anchor Descriptor                 | Eligible Content,             | Resources & Activities | Assessments          | Suggested |
|--------------------|-----------------------------------|-------------------------------|------------------------|----------------------|-----------|
|                    | PA Academic and Core              | Essential Knowledge,          |                        |                      | Time      |
|                    | Standards                         | Skills & Vocabulary           |                        |                      | (In Days) |
| Introduction to    | Anchor Descriptor                 | Essential Knowledge/Skills:   | Teacher prepared       | Teacher prepared     | 9 days    |
| the kinetic        | CHEM.A.1.1 Identify and           | Solids, liquids, gases        |                        | tests, quizzes, etc. |           |
| theory. Solids     | describe how observable and       | The 7 crystal systems         |                        |                      |           |
| and liquids. Heat  | measurable properties can be      | A unit cell                   |                        |                      |           |
| calculations and   | used to classify and describe     | Bonding in diamonds vs        |                        |                      |           |
| calorimetry.       | matter and energy.                | graphite                      |                        |                      |           |
|                    |                                   | Amorphous material            |                        |                      |           |
| This unit begins   | CHEM.B.1.4 Explain how models     | The pitch drop experiment     |                        |                      |           |
| with a discussion  | can be used to represent          | Viscosity                     |                        |                      |           |
| of intermolecular  | bonding.                          | Defining temperature          |                        |                      |           |
| forces and what    |                                   | Absolute zero                 |                        |                      |           |
| makes a solid a    | AP Chemistry Enduring             | Reversible changes            |                        |                      |           |
| solid, which leads | understanding 5.A:                | Dynamic equilibrium           |                        |                      |           |
| to understanding   | Two systems with different        | Phase changes                 |                        |                      |           |
| the dynamics of a  | temperatures that are in          | Standard pressure values      |                        |                      |           |
| beaker of water    | thermal contact will exchange     | Vapor pressure                |                        |                      |           |
| with and without   | energy. The quantity of thermal   | Phase diagrams                |                        |                      |           |
| a lid on it. This  | energy transferred from one       | Specific heat capacity        |                        |                      |           |
| continues to the   | system to another is called heat. | Enthalpy                      |                        |                      |           |
| interpretation of  |                                   | Calorimetry                   |                        |                      |           |
| a phase diagram    | Framework Concept:                |                               |                        |                      |           |
| and relating it to | A stable molecule has lower       | Lab Experiments:              |                        |                      |           |
| a heating curve.   | energy, by an amount known as     |                               |                        |                      |           |
| Heat calculation   | the binding energy, than the      | Models of the crystal systems |                        |                      |           |
| follow including   | same set of atoms separated;      | Heating curve                 |                        |                      |           |
| extensive work     | this energy must be provided to   | Specific heat of a metal      |                        |                      |           |
| with calorimetry.  |                                   | Temperature of a Bunsen       |                        |                      |           |
|                    | break the bond.                   | burner flame                  |                        |                      |           |
| MODULE A—          |                                   |                               |                        |                      |           |
| Properties and     | Framework Concept:                |                               |                        |                      |           |
| Classification of  | The structure and interactions    |                               |                        |                      |           |
| Matter             | of matter at the bulk scale are   |                               |                        |                      |           |

|                    |                                 |                                                     | ı |   |  |
|--------------------|---------------------------------|-----------------------------------------------------|---|---|--|
|                    | determined by electrical forces | Eligible Content:                                   |   |   |  |
| MODULE B— The      | within and between atoms.       | CHEM.A.1.1.1                                        |   |   |  |
| Mole and           | Properties of chemical          | Classify physical or chemical                       |   |   |  |
| Chemical           | compounds are related to        | changes within a system in                          |   |   |  |
| Interactions       | electrostatic interaction       | terms of matter and/or energy.                      |   |   |  |
|                    | between particles.              | energy.                                             |   |   |  |
| AP Chemistry Big   | -                               | CHEM.B.1.4.1 Recognize and                          |   |   |  |
| Idea 5: The laws   | Framework Concept:              | describe different types of                         |   |   |  |
| of                 | The energy an object has within | models that can be used to                          |   |   |  |
| thermodynamics     | a system depends on the         | illustrate the bonds that hold                      |   |   |  |
| describe the       | object's motion and             | atoms together in a                                 |   |   |  |
| Essential role of  | interactions with other objects | compound (e.g., computer                            |   |   |  |
| energy and         | in that system.                 | models, ball-and-stick<br>models, graphical models, |   |   |  |
| explain and        | c.i.de oyote                    | solid-sphere models,                                |   |   |  |
| predict the        | Framework Concept:              | structural formulas, skeletal                       |   |   |  |
| direction of       | Any change in an object's       | formulas, Lewis dot                                 |   |   |  |
| changes in         | energy is the result of         | structures).                                        |   |   |  |
| matter.            | interactions with other objects |                                                     |   |   |  |
| matter.            | •                               | AP Chemistry Essential                              |   |   |  |
| Framework Big      | in a system or a transfer of    | knowledge 5.A.1:                                    |   |   |  |
| Idea: Matter can   | energy between systems,         | Temperature is a measure of                         |   |   |  |
| be understood in   | changing in the total energy of | the average kinetic energy of atoms and molecules.  |   |   |  |
|                    | the systems involved.           | atoms and molecules.                                |   |   |  |
| terms of the       |                                 |                                                     |   |   |  |
| types of atoms     | Framework Concept:              | All of the molecules in a                           |   |   |  |
| present and the    | Any energy gain or loss in a    | sample are in motion.                               |   |   |  |
| interactions both  | system will result in a         | The Kelvin temperature of a                         |   |   |  |
| between and        | corresponding energy loss or    | sample of matter is                                 |   |   |  |
| within atoms.      | gain in another system.         | proportional to the average                         |   |   |  |
|                    |                                 | kinetic energy of the particles                     |   |   |  |
| Framework Big      | PA Academic Standards:          | in the sample. When the                             |   |   |  |
| Idea: Interactions | Science                         | ,                                                   |   | _ |  |

| of objects or       |
|---------------------|
| systems of objects  |
| can be predicted    |
| and explained using |
| the concept of      |
| energy transfer and |
| conservation.       |

- 3.1.10.B: Describe concepts of models as a way to predict and understand science and technology.
- Distinguish between different types of models and modeling techniques and apply their appropriate use in specific applications (e.g., kinetic gas theory).
- 3.1.10.E: Describe patterns of change in nature, physical and man-made systems.
- Recognize that stable systems often involve underlying dynamic changes (e.g., a chemical reaction at equilibrium has molecules reforming continuously).
- 3.4.10.A: Explain concepts about the structure and properties of matter.
- Describe phases of matter according to the Kinetic Molecular Theory.
- 3.4.10.B: Analyze energy sources and transfers of heat.
- Evaluate energy changes in chemical reactions.

## PA Core Standards: Reading for Science and

average kinetic energy of the particles in the sample doubles, the Kelvin temperature is doubled. As the temperature approaches 0 K (zero Kelvin), the average kinetic energy of a system approaches a minimum near zero.

The Maxwell-Boltzmann distribution shows that the distribution of kinetic energies becomes greater (more disperse) as temperature increases.

# AP Chemistry Essential knowledge 5.A.2:

The process of kinetic energy transfer at the particulate scale is referred to in this course as heat transfer, and the spontaneous direction of the transfer is always from a hot to a cold body.

On average, molecules in the warmer body have more kinetic energy than the molecules in the cooler body.

Collisions of molecules that are in thermal contact transfer energy.

|                                          | Curriculum Guide               |  |  |
|------------------------------------------|--------------------------------|--|--|
| Technical Subjects, 6-12                 | Scientists describe this       |  |  |
| 3.5 Reading Informational Text           | process as "energy is          |  |  |
| Students read, understand, and           | transferred as heat."          |  |  |
| respond to informational text-           |                                |  |  |
| with emphasis on                         | Eventually, thermal            |  |  |
| comprehension, making                    | equilibrium is reached as the  |  |  |
| connections among ideas and              | molecular collisions           |  |  |
| between texts with focus on              | continue.                      |  |  |
| textual evidence.                        |                                |  |  |
|                                          | The average kinetic energy     |  |  |
| PA Core Standards: Writing for           | of both substances is the      |  |  |
| Science and Technical Subjects,          | same at thermal                |  |  |
| 6-12                                     |                                |  |  |
| 3.6 Writing Students write for different | equilibrium.                   |  |  |
| purposes and audiences.                  | Heat is not a substance, i.e., |  |  |
| Students write clear and focused         | it makes no sense to say       |  |  |
| text to convey a well-defined            | that an object contains a      |  |  |
| perspective and appropriate              | certain amount of heat.        |  |  |
| content.                                 | Rather, "heat exchange" or     |  |  |
| l something                              | "transfer of energy as heat"   |  |  |
|                                          | refers to the process in       |  |  |
|                                          | which energy is transferred    |  |  |
|                                          | from a hot to a cold body in   |  |  |
|                                          | thermal contact.               |  |  |
|                                          | thermal contact.               |  |  |
|                                          | The transfer of a given        |  |  |
|                                          | amount of thermal energy       |  |  |
|                                          | will not produce the same      |  |  |
|                                          | temperature change in          |  |  |
|                                          | equal masses of matter with    |  |  |
|                                          | differing specific heat        |  |  |
|                                          | capacities.                    |  |  |
|                                          |                                |  |  |
|                                          | AP Chemistry Enduring          |  |  |

| Curriculum Guide |  |                                |  |  |  |  |
|------------------|--|--------------------------------|--|--|--|--|
|                  |  | understanding 5.B:             |  |  |  |  |
|                  |  | Energy is neither created nor  |  |  |  |  |
|                  |  | destroyed, but only            |  |  |  |  |
|                  |  | transformed from one form      |  |  |  |  |
|                  |  | to another.                    |  |  |  |  |
|                  |  |                                |  |  |  |  |
|                  |  | AP Chemistry Essential         |  |  |  |  |
|                  |  | knowledge 5.B.3:               |  |  |  |  |
|                  |  | Chemical systems undergo       |  |  |  |  |
|                  |  | three main processes that      |  |  |  |  |
|                  |  | change their energy:           |  |  |  |  |
|                  |  | heating/cooling, phase         |  |  |  |  |
|                  |  | transitions, and chemical      |  |  |  |  |
|                  |  | reactions.                     |  |  |  |  |
|                  |  |                                |  |  |  |  |
|                  |  | Heating a system in crosses    |  |  |  |  |
|                  |  | Heating a system increases     |  |  |  |  |
|                  |  | the energy of the system,      |  |  |  |  |
|                  |  | while cooling a system         |  |  |  |  |
|                  |  | decreases the energy. A liter  |  |  |  |  |
|                  |  | of water at 50°C has more      |  |  |  |  |
|                  |  | energy than a liter of water   |  |  |  |  |
|                  |  | at 25°C.                       |  |  |  |  |
|                  |  | The amount of a series         |  |  |  |  |
|                  |  | The amount of energy           |  |  |  |  |
|                  |  | needed to heat one gram of     |  |  |  |  |
|                  |  | a substance by 1°C is the      |  |  |  |  |
|                  |  | specific heat capacity of that |  |  |  |  |
|                  |  | substance.                     |  |  |  |  |
|                  |  | Energy must be transferred     |  |  |  |  |
|                  |  | to a system to cause it to     |  |  |  |  |
|                  |  | melt (or boil). The energy of  |  |  |  |  |
|                  |  | the system therefore           |  |  |  |  |
|                  |  | increases as the system        |  |  |  |  |
|                  |  | mercases as the system         |  |  |  |  |

|         | Curriculum Guide                 |  |  |
|---------|----------------------------------|--|--|
|         | undergoes a solid-liquid (or     |  |  |
|         | liquid-gas) phase transition.    |  |  |
|         | Likewise, a system gives off     |  |  |
|         | energy when it freezes (or       |  |  |
|         | condenses). The energy of        |  |  |
|         | the system decreases as the      |  |  |
|         | system undergoes a liquid-       |  |  |
|         | solid (or gas-liquid) phase      |  |  |
|         | transition.                      |  |  |
|         | The amount of energy             |  |  |
|         | needed to vaporize one mole      |  |  |
|         | of a pure substance is the       |  |  |
|         | molar enthalpy of                |  |  |
|         | vaporization, and the energy     |  |  |
|         | released in condensation has     |  |  |
|         | an equal magnitude. The          |  |  |
|         | molar enthalpy of fusion is      |  |  |
|         | the energy absorbed when         |  |  |
|         | one mole of a pure solid         |  |  |
|         | melts or changes from the        |  |  |
|         | solid to liquid state and the    |  |  |
|         | energy released when the         |  |  |
|         | liquid solidifies has an equal   |  |  |
|         | magnitude.                       |  |  |
|         | When a chemical reaction         |  |  |
|         | occurs, the energy of the        |  |  |
|         | system decreases                 |  |  |
|         | (exothermic reaction),           |  |  |
|         | increases (endothermic           |  |  |
|         | reaction), or remains the        |  |  |
|         | same. For exothermic             |  |  |
|         | reactions, the energy lost by    |  |  |
| <u></u> | 21 2112112, 1112 3110.01 1000 01 |  |  |

| the reacting molecules (system) is gained by the surroundings. The energy is transferred to the surroundings by either heat or work. Likewise, for endothermic reactions, the system gains energy from the surroundings by heat transfer or work done on the system.  The enthalpy change of reaction gives the amount of energy released (for negative values) or absorbed (for positive values) by a chemical reaction at constant pressure.  AP Chemistry Essential knowledge 5.B.4: Calorimetry is an experimental technique that is used to determine the heat exchanged/transferred in a chemical system.  Framework Competency: Construct models showing that energy is needed to break bonds and overcome integred out the force and for |  | Curriculum Guide             |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|------------------------------|--|--|
| surroundings. The energy is transferred to the surroundings by either heat or work. Likewise, for endothermic reactions, the system gains energy from the surroundings by heat transfer or work done on the system.  The enthalpy change of reaction gives the amount of energy released (for negative values) or absorbed (for positive values) or absorbed (for positive values) by a chemical reaction at constant pressure.  AP Chemistry Essential knowledge 5.B.4: Calorimetry is an experimental technique that is used to determine the heat exchanged/transferred in a chemical system.  Framework Competency: Construct models showing that energy is needed to break bonds and overcome                                               |  | the reacting molecules       |  |  |
| transferred to the surroundings by either heat or work. Likewise, for endothermic reactions, the system gains energy from the surroundings by heat transfer or work done on the system.  The enthalpy change of reaction gives the amount of energy released (for negative values) or absorbed (for positive values) by a chemical reaction at constant pressure.  AP Chemistry Essential knowledge 5.8.4: Calorimetry is an experimental technique that is used to determine the heat exchanged/transferred in a chemical system.  Framework Competency: Construct models showing that energy is needed to break bonds and overcome                                                                                                             |  | (system) is gained by the    |  |  |
| surroundings by either heat or work. Likewise, for endothermic reactions, the system gains energy from the surroundings by heat transfer or work done on the system.  The enthalpy change of reaction gives the amount of energy released (for negative values) or absorbed (for positive values) by a chemical reaction at constant pressure.  AP Chemistry Essential knowledge 5.B.4: Calorimetry is an experimental technique that is used to determine the heat exchanged/transferred in a chemical system.  Framework Competency: Construct models showing that energy is needed to break bonds and overcome                                                                                                                                |  | surroundings. The energy is  |  |  |
| or work. Likewise, for endothermic reactions, the system gains energy from the surroundings by heat transfer or work done on the system.  The enthalpy change of reaction gives the amount of energy released (for negative values) or absorbed (for positive values) by a chemical reaction at constant pressure.  AP Chemistry Essential knowledge 5.B.4: Calorimetry is an experimental technique that is used to determine the heat exchanged/transferred in a chemical system.  Framework Competency: Construct models showing that energy is needed to break bonds and overcome                                                                                                                                                            |  | transferred to the           |  |  |
| endothermic reactions, the system gains energy from the surroundings by heat transfer or work done on the system.  The enthalpy change of reaction gives the amount of energy released (for negative values) or absorbed (for positive values) by a chemical reaction at constant pressure.  AP Chemistry Essential knowledge 5.B.4: Calorimetry is an experimental technique that is used to determine the heat exchanged/transferred in a chemical system.  Framework Competency: Construct models showing that energy is needed to break bonds and overcome                                                                                                                                                                                   |  | surroundings by either heat  |  |  |
| system gains energy from the surroundings by heat transfer or work done on the system.  The enthalpy change of reaction gives the amount of energy released (for negative values) or absorbed (for positive values) by a chemical reaction at constant pressure.  AP Chemistry Essential knowledge 5.B.4: Calorimetry is an experimental technique that is used to determine the heat exchanged/transferred in a chemical system.  Framework Competency: Construct models showing that energy is needed to break bonds and overcome                                                                                                                                                                                                              |  | or work. Likewise, for       |  |  |
| surroundings by heat transfer or work done on the system.  The enthalpy change of reaction gives the amount of energy released (for negative values) or absorbed (for positive values) by a chemical reaction at constant pressure.  AP Chemistry Essential knowledge 5.B.4: Calorimetry is an experimental technique that is used to determine the heat exchanged/transferred in a chemical system.  Framework Competency: Construct models showing that energy is needed to break bonds and overcome                                                                                                                                                                                                                                           |  | endothermic reactions, the   |  |  |
| transfer or work done on the system.  The enthalpy change of reaction gives the amount of energy released (for negative values) or absorbed (for positive values) by a chemical reaction at constant pressure.  AP Chemistry Essential knowledge 5.B.4: Calorimetry is an experimental technique that is used to determine the heat exchanged/transferred in a chemical system.  Framework Competency: Construct models showing that energy is needed to break bonds and overcome                                                                                                                                                                                                                                                                |  | system gains energy from the |  |  |
| system.  The enthalpy change of reaction gives the amount of energy released (for negative values) or absorbed (for positive values) by a chemical reaction at constant pressure.  AP Chemistry Essential knowledge 5.B.4: Calorimetry is an experimental technique that is used to determine the heat exchanged/transferred in a chemical system.  Framework Competency: Construct models showing that energy is needed to break bonds and overcome                                                                                                                                                                                                                                                                                             |  | surroundings by heat         |  |  |
| The enthalpy change of reaction gives the amount of energy released (for negative values) or absorbed (for positive values) by a chemical reaction at constant pressure.  AP Chemistry Essential knowledge 5.B.4: Calorimetry is an experimental technique that is used to determine the heat exchanged/transferred in a chemical system.  Framework Competency: Construct models showing that energy is needed to break bonds and overcome                                                                                                                                                                                                                                                                                                      |  | transfer or work done on the |  |  |
| reaction gives the amount of energy released (for negative values) or absorbed (for positive values) by a chemical reaction at constant pressure.  AP Chemistry Essential knowledge 5.B.4: Calorimetry is an experimental technique that is used to determine the heat exchanged/transferred in a chemical system.  Framework Competency: Construct models showing that energy is needed to break bonds and overcome                                                                                                                                                                                                                                                                                                                             |  | system.                      |  |  |
| reaction gives the amount of energy released (for negative values) or absorbed (for positive values) by a chemical reaction at constant pressure.  AP Chemistry Essential knowledge 5.B.4: Calorimetry is an experimental technique that is used to determine the heat exchanged/transferred in a chemical system.  Framework Competency: Construct models showing that energy is needed to break bonds and overcome                                                                                                                                                                                                                                                                                                                             |  | The enthalpy change of       |  |  |
| energy released (for negative values) or absorbed (for positive values) by a chemical reaction at constant pressure.  AP Chemistry Essential knowledge 5.B.4: Calorimetry is an experimental technique that is used to determine the heat exchanged/transferred in a chemical system.  Framework Competency: Construct models showing that energy is needed to break bonds and overcome                                                                                                                                                                                                                                                                                                                                                          |  |                              |  |  |
| values) or absorbed (for positive values) by a chemical reaction at constant pressure.  AP Chemistry Essential knowledge 5.B.4: Calorimetry is an experimental technique that is used to determine the heat exchanged/transferred in a chemical system.  Framework Competency: Construct models showing that energy is needed to break bonds and overcome                                                                                                                                                                                                                                                                                                                                                                                        |  | _                            |  |  |
| positive values) by a chemical reaction at constant pressure.  AP Chemistry Essential knowledge 5.B.4: Calorimetry is an experimental technique that is used to determine the heat exchanged/transferred in a chemical system.  Framework Competency: Construct models showing that energy is needed to break bonds and overcome                                                                                                                                                                                                                                                                                                                                                                                                                 |  |                              |  |  |
| reaction at constant pressure.  AP Chemistry Essential knowledge 5.B.4: Calorimetry is an experimental technique that is used to determine the heat exchanged/transferred in a chemical system.  Framework Competency: Construct models showing that energy is needed to break bonds and overcome                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |                              |  |  |
| AP Chemistry Essential knowledge 5.B.4: Calorimetry is an experimental technique that is used to determine the heat exchanged/transferred in a chemical system.  Framework Competency: Construct models showing that energy is needed to break bonds and overcome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |                              |  |  |
| AP Chemistry Essential knowledge 5.B.4: Calorimetry is an experimental technique that is used to determine the heat exchanged/transferred in a chemical system.  Framework Competency: Construct models showing that energy is needed to break bonds and overcome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  | pressure.                    |  |  |
| knowledge 5.B.4: Calorimetry is an experimental technique that is used to determine the heat exchanged/transferred in a chemical system.  Framework Competency: Construct models showing that energy is needed to break bonds and overcome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  | •                            |  |  |
| Calorimetry is an experimental technique that is used to determine the heat exchanged/transferred in a chemical system.  Framework Competency: Construct models showing that energy is needed to break bonds and overcome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  | AP Chemistry Essential       |  |  |
| experimental technique that is used to determine the heat exchanged/transferred in a chemical system.  Framework Competency: Construct models showing that energy is needed to break bonds and overcome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  | knowledge 5.B.4:             |  |  |
| is used to determine the heat exchanged/transferred in a chemical system.  Framework Competency: Construct models showing that energy is needed to break bonds and overcome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  | Calorimetry is an            |  |  |
| is used to determine the heat exchanged/transferred in a chemical system.  Framework Competency: Construct models showing that energy is needed to break bonds and overcome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  | •                            |  |  |
| Chemical system.  Framework Competency: Construct models showing that energy is needed to break bonds and overcome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |                              |  |  |
| Chemical system.  Framework Competency: Construct models showing that energy is needed to break bonds and overcome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  | exchanged/transferred in a   |  |  |
| Construct models showing that energy is needed to break bonds and overcome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |                              |  |  |
| Construct models showing that energy is needed to break bonds and overcome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |                              |  |  |
| that energy is needed to break bonds and overcome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  | Framework Competency:        |  |  |
| break bonds and overcome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  | Construct models showing     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  | that energy is needed to     |  |  |
| intermolecular forces and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  | break bonds and overcome     |  |  |
| intermolecular forces affu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  | intermolecular forces and    |  |  |

| that energy is released when   |  |
|--------------------------------|--|
| bonds form.                    |  |
|                                |  |
| Framework Competency:          |  |
| Analyze and interpret data     |  |
| obtained from measuring the    |  |
| bulk properties of various     |  |
| substances to explain the      |  |
| relative strength of the       |  |
| interactions among particles   |  |
| in the substance.              |  |
|                                |  |
| Framework Competency:          |  |
| Construct an explanation for   |  |
| the energy of an object has in |  |
| a system based on the          |  |
| object's motion and the        |  |
| object's interaction with      |  |
| other objects in the system.   |  |
|                                |  |
| Framework Competency:          |  |
| Develop and use a model to     |  |
| explain how an object's        |  |
| energy is transferred or       |  |
| transformed as objects         |  |
| interact within a system.      |  |
|                                |  |
| Framework Competency:          |  |
| Identify problems and          |  |
| suggest design solutions to    |  |
| optimize the energy transfer   |  |
| optimize the energy transfer   |  |

| Curriculum Guide |  |                            |  |  |  |  |
|------------------|--|----------------------------|--|--|--|--|
|                  |  | between objects or systems |  |  |  |  |
|                  |  | of objects.                |  |  |  |  |
|                  |  |                            |  |  |  |  |
|                  |  | Vocabulary:                |  |  |  |  |
|                  |  | Activation Binding Energy  |  |  |  |  |
|                  |  | Bond Energy                |  |  |  |  |
|                  |  | Endothermic                |  |  |  |  |
|                  |  | Energy                     |  |  |  |  |
|                  |  | Enthalpy                   |  |  |  |  |
|                  |  | Exothermic                 |  |  |  |  |
|                  |  | Lattice energy             |  |  |  |  |
|                  |  | Physical properties        |  |  |  |  |
|                  |  | Boiling point              |  |  |  |  |
|                  |  | Bonding                    |  |  |  |  |
|                  |  | Dispersion Forces          |  |  |  |  |
|                  |  | Freezing point             |  |  |  |  |
|                  |  | Hydrogen                   |  |  |  |  |
|                  |  | Intermolecular             |  |  |  |  |
|                  |  | "Like dissolves like"      |  |  |  |  |
|                  |  | London                     |  |  |  |  |
|                  |  | Van der Waals              |  |  |  |  |
|                  |  | Melting point              |  |  |  |  |
|                  |  | Polarity                   |  |  |  |  |
|                  |  | Vapor pressure             |  |  |  |  |
|                  |  | Kinetic energy             |  |  |  |  |
|                  |  | Potential energy           |  |  |  |  |
|                  |  | Energy transfer            |  |  |  |  |
|                  |  | Model                      |  |  |  |  |
|                  |  | System                     |  |  |  |  |
|                  |  | Design                     |  |  |  |  |
|                  |  | Energy transfer            |  |  |  |  |
|                  |  | 2.10.01 (10113101          |  |  |  |  |

|   |  | Solution |                                         |   |  |
|---|--|----------|-----------------------------------------|---|--|
|   |  |          |                                         |   |  |
|   |  |          |                                         |   |  |
|   |  |          |                                         |   |  |
|   |  |          |                                         |   |  |
|   |  |          |                                         |   |  |
|   |  |          |                                         |   |  |
|   |  |          |                                         |   |  |
|   |  |          |                                         |   |  |
|   |  |          |                                         |   |  |
|   |  |          |                                         |   |  |
|   |  |          |                                         |   |  |
|   |  |          |                                         |   |  |
| 1 |  | 1        | l e e e e e e e e e e e e e e e e e e e | 1 |  |

| General Topic       | Anchor Descriptor                                 | Eligible Content,            | Resources & Activities | Assessments          | Suggested |
|---------------------|---------------------------------------------------|------------------------------|------------------------|----------------------|-----------|
|                     | PA Academic and Core                              | Essential Knowledge,         |                        |                      | Time      |
|                     | Standards                                         | Skills & Vocabulary          |                        |                      | (In Days) |
| Gas behavior        | Anchor Descriptor                                 | Essential Knowledge/Skills:  | Teacher prepared       | Teacher prepared     | 10 days   |
|                     | CHEM.B.2.2 Explain how the                        | The kinetic theory revisited |                        | tests, quizzes, etc. |           |
| An explanation of   | kinetic molecular theory relates                  | Hooke                        |                        |                      |           |
| what causes         | to the behavior of gases.                         | Pressure                     |                        |                      |           |
| pressure starts     |                                                   | Manometer calculations       |                        |                      |           |
| this unit on gases. | Framework Concept:                                | Absolute zero, again         |                        |                      |           |
| Then after          | The kinetic molecular theory                      | Boyle's law                  |                        |                      |           |
| learning how        | and Gas Laws are used to                          | Charles' law                 |                        |                      |           |
| pressure is         | explain and predict the                           | Gay-Lussac's law             |                        |                      |           |
| measured, we        | behavior of gases.                                | Avogadro's law               |                        |                      |           |
| discuss the         |                                                   | Diffusion and effusion       |                        |                      |           |
| relationship        | PA Academic Standards:                            | Graham's law                 |                        |                      |           |
| between             | Science                                           | Real gases                   |                        |                      |           |
| pressure,           |                                                   | Joule-Thompson effect        |                        |                      |           |
| temperature, and    | 3.1.10.B: Describe concepts of                    |                              |                        |                      |           |
| volume of a gas     | models as a way to predict and                    | Lab Experiments:             |                        |                      |           |
| and what makes a    | understand science and                            |                              |                        |                      |           |
| gas ideal.          | technology.                                       | Determining absolute zero    |                        |                      |           |
| Followed by a       | <ul> <li>Distinguish between different</li> </ul> | Boyle's law                  |                        |                      |           |
| discussion of       | types of models and modeling                      | Charles' law                 |                        |                      |           |
| diffusion.          | techniques and apply their                        | Gay-Lussac's law             |                        |                      |           |
|                     | appropriate use in specific                       | Graham's law                 |                        |                      |           |
| MODULE B— The       | applications (e.g., kinetic gas                   | Online Gas simulation        |                        |                      |           |
| Mole and            | theory).                                          | activities                   |                        |                      |           |
| Chemical            |                                                   |                              |                        |                      |           |
| Interactions        | 3.1.10.E: Describe patterns of                    | Eligible Content:            |                        |                      |           |
|                     | change in nature, physical and                    | CHEM.B.2.2.1 Utilize         |                        |                      |           |
| F                   | man-made systems.                                 | mathematical relationships   |                        |                      |           |
| Framework Big       | Describe how fundamental                          | to predict changes in the    |                        |                      |           |
| Idea: Matter can    | science and technology                            | number of particles, the     |                        |                      |           |
| be understood in    |                                                   |                              |                        |                      | <u> </u>  |

|                   | 1                                                        | Curriculum Guide               |          | 1            |
|-------------------|----------------------------------------------------------|--------------------------------|----------|--------------|
| terms of the      | concepts are used to solve                               | temperature, the pressure,     |          |              |
| types of atoms    | practical problems (e.g., gas                            | and the volume in a gaseous    | _        |              |
| present and the   | laws).                                                   | system (i.e., Boyle's law,     | _        |              |
| interactions both |                                                          | Charles's law, Dalton's law of | _        |              |
| between and       | 3.4.10.A: Explain concepts about                         | partial pressures, the         |          |              |
| within atoms.     | the structure and properties of                          | combined gas law, and the      | _        |              |
|                   | matter.                                                  | ideal gas law).                |          |              |
|                   | <ul> <li>Predict the behavior of gases</li> </ul>        |                                |          |              |
|                   | through the use of Boyle's,                              | Framework Competency:          |          |              |
|                   | Charles' or the ideal gas law, in                        | Utilize mathematical           | _        |              |
|                   | everyday situations.                                     | relationships to predict       | _        |              |
|                   | Describe phases of matter                                | changes in the number of       |          |              |
|                   | according to the Kinetic                                 | particles (moles), the         |          |              |
|                   | Molecular Theory.                                        | temperature, the pressure,     |          |              |
|                   |                                                          | and the volume in a gaseous    |          |              |
|                   | PA Core Standards:                                       | system (i.e., Boyle's Law,     |          |              |
|                   | Reading for Science and                                  | Charles' Law, Avogadro's       |          |              |
|                   | Technical Subjects, 6-12                                 | Law, Dalton's Law of partial   |          |              |
|                   | 3.5 Reading Informational Text                           | pressures, the combined gas    |          |              |
|                   | Students read, understand, and                           | law, and the ideal gas law).   |          |              |
|                   | respond to informational text-                           |                                |          |              |
|                   | with emphasis on comprehension,                          | Vocabulary:                    | _        |              |
|                   | making connections among ideas                           | Absolute Zero                  |          |              |
|                   | and between texts with focus on                          | Avogadro's law                 |          |              |
|                   | textual evidence.                                        | Boyle's law                    |          |              |
|                   |                                                          | Charles's law                  |          |              |
|                   | PA Core Standards: Writing for                           | Gay-Lussac's law               |          |              |
|                   | Science and Technical Subjects,                          | Molar mass                     |          |              |
|                   | 6-12                                                     | Molar volume                   |          |              |
|                   | 3.6 Writing                                              | Pressure                       |          |              |
|                   | Students write for different                             | STP                            |          |              |
|                   | purposes and audiences. Students write clear and focused |                                |          |              |
|                   | text to convey a well-defined                            |                                |          |              |
|                   | perspective and appropriate                              |                                |          |              |
|                   | content.                                                 |                                |          |              |
|                   | content.                                                 |                                | <u> </u> | <br><u> </u> |

| General Topic     | Anchor Descriptor                | Eligible Content,             | Resources & Activities | Assessments          | Suggested |
|-------------------|----------------------------------|-------------------------------|------------------------|----------------------|-----------|
|                   | PA Academic and Core             | Essential Knowledge,          |                        |                      | Time      |
|                   | Standards                        | Skills & Vocabulary           |                        |                      | (In Days) |
| Gas laws and      | Anchor Descriptor                | Essential Knowledge/Skills:   | Teacher prepared       | Teacher prepared     | 11 days   |
| math              | CHEM.B.2.1 Predict what          | The named laws                |                        | tests, quizzes, etc. |           |
|                   | happens during a chemical        | The combined gas law          |                        |                      |           |
| The quantitative  | reaction.                        | The ideal gas law             |                        |                      |           |
| study of the gas  |                                  | Partial pressure and Dalton's |                        |                      |           |
| laws, and         | CHEM.B.2.2 Explain how the       | law                           |                        |                      |           |
| stoichiometry of  | kinetic molecular theory relates | Graham's law                  |                        |                      |           |
| gases not at STP. | to the behavior of gases.        | Stoichiometry not at STP      |                        |                      |           |
| MODULE B— The     | Framework Concept:               | Lab Experiments:              |                        |                      |           |
| Mole and          | The kinetic molecular theory     |                               |                        |                      |           |
| Chemical          | and Gas Laws are used to         | Calculate rate of diffusion   |                        |                      |           |
| Interactions      | explain and predict the          | Find the value of R           |                        |                      |           |
| interactions      | behavior of gases.               | Molar mass of butane          |                        |                      |           |
|                   |                                  | A gas collected over water    |                        |                      |           |
| Framework Big     | PA Academic Standards:           |                               |                        |                      |           |
| Idea: Matter can  | Science                          | Eligible Content:             |                        |                      |           |
| be understood in  | 3.1.10.B: Describe concepts of   | CHEM.B.2.1.1 Describe the     |                        |                      |           |
| terms of the      | models as a way to predict and   | roles of limiting and excess  |                        |                      |           |
| types of atoms    | understand science and           | reactants in chemical         |                        |                      |           |
| present and the   | technology.                      | reactions.                    |                        |                      |           |
| interactions both | Distinguish between different    |                               |                        |                      |           |
| between and       | types of models and modeling     | CHEM.B.2.1.2 Use              |                        |                      |           |
| within atoms.     | techniques and apply their       | stoichiometric relationships  |                        |                      |           |
|                   | appropriate use in specific      | to calculate the amounts of   |                        |                      |           |
|                   | applications (e.g., kinetic gas  | reactants and products        |                        |                      |           |
|                   | theory).                         | involved in a chemical        |                        |                      |           |
|                   | - "                              | reaction.                     |                        |                      |           |
|                   | 3.1.10.E: Describe patterns of   | CHEM.B.2.2.1 Utilize          |                        |                      |           |
|                   | change in nature, physical and   | mathematical relationships    |                        |                      |           |

|                                                   | Curriculum Guide               |  |   |
|---------------------------------------------------|--------------------------------|--|---|
| man-made systems.                                 | to predict changes in the      |  |   |
| Describe how fundamental                          | number of particles, the       |  | 1 |
| science and technology                            | temperature, the pressure,     |  | 1 |
| concepts are used to solve                        | and the volume in a gaseous    |  | 1 |
| practical problems (e.g., gas                     | system (i.e., Boyle's law,     |  | 1 |
| laws).                                            | Charles's law, Dalton's law of |  | 1 |
|                                                   | partial pressures, the         |  | 1 |
| 3.4.10.A: Explain concepts about                  | combined gas law, and the      |  | 1 |
| the structure and properties of                   | ideal gas law).                |  | 1 |
| matter.                                           |                                |  | 1 |
| <ul> <li>Predict the behavior of gases</li> </ul> | CHEM.B.2.2.2 Predict the       |  | 1 |
| through the use of Boyle's,                       | amounts of reactants and       |  | 1 |
| Charles' or the ideal gas law, in                 | products involved in a         |  | 1 |
| everyday situations.                              | chemical reaction using        |  | 1 |
| Describe phases of matter                         | molar volume of a gas at STP.  |  | 1 |
| according to the Kinetic                          |                                |  | 1 |
| Molecular Theory.                                 | Framework Competency:          |  | 1 |
|                                                   | Utilize mathematical           |  | 1 |
| PA Core Standards:                                | relationships to predict       |  | 1 |
| Reading for Science and                           | changes in the number of       |  | 1 |
| Technical Subjects, 6-12                          | particles (moles), the         |  | 1 |
| 3.5 Reading Informational Text                    | temperature, the pressure,     |  | 1 |
| Students read, understand, and                    | and the volume in a gaseous    |  | 1 |
| respond to informational text-                    | system (i.e., Boyle's Law,     |  | 1 |
| with emphasis on comprehension,                   | Charles' Law, Avogadro's       |  | 1 |
| making connections among ideas                    | Law, Dalton's Law of partial   |  |   |
| and between texts with focus on                   | pressures, the combined gas    |  |   |
| textual evidence.                                 | law, and the ideal gas law).   |  | ı |

# **PA Core Standards: Writing for** Science and Technical Subjects, 6-12

3.6 Writing Students write for different purposes and audiences. Students write clear and focused

## Vocabulary:

Avogadro's law Boyle's law Charles's law Combined gas law Dalton's law of density

| text to convey a well-defined perspective and appropriate content. | Partial pressures Gay-Lussac's law Ideal Gas Law Molar mass Molar volume Pressure STP |  |  |
|--------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|--|
|                                                                    |                                                                                       |  |  |

| General Topic      | Anchor Descriptor               | Eligible Content,               | Resources & Activities | Assessments          | Suggested |
|--------------------|---------------------------------|---------------------------------|------------------------|----------------------|-----------|
|                    | PA Academic and Core            | Essential Knowledge,            |                        |                      | Time      |
|                    | Standards                       | Skills & Vocabulary             |                        |                      | (In Days) |
| Electrochemistry   | Anchor Descriptor:              | Essential Knowledge/Skills:     | Teacher prepared       | Teacher prepared     | 10 days   |
|                    | N/A                             | Redox reactions                 |                        | tests, quizzes, etc. |           |
| In this final unit | AP Chemistry Enduring           | Balance redox in acidic and     |                        |                      |           |
| we will study how  | understanding 3.B:              | basic solutions                 |                        |                      |           |
| electrons drive    | Chemical reactions can be       | Standard reduction              |                        |                      |           |
|                    | classified by considering what  | potentials                      |                        |                      |           |
| chemical           | the reactants are, what the     | Charge produced and             |                        |                      |           |
| reactions,         | products are, or how they       | stoichiometry                   |                        |                      |           |
| specifically those | change from one into the other. | Voltaic cells                   |                        |                      |           |
| used to create an  | Classes of chemical reactions   | Electrolytic cells              |                        |                      |           |
| electrochemical    | include synthesis,              |                                 |                        |                      |           |
| battery.           | decomposition, acid-base, and   |                                 |                        |                      |           |
| watte. y.          | oxidation-reduction reactions.  | Eligible Content:               |                        |                      |           |
| AD Chamista Pis    |                                 | AP Chemistry Essential          |                        |                      |           |
| AP Chemistry Big   | AP Chemistry Enduring           | Knowledge 3.B.3:                |                        |                      |           |
| Idea 3: Changes in | understanding 3.C:              | In oxidation-reduction          |                        |                      |           |
| matter involve     | Chemical and physical           | (redox) reactions, there is a   |                        |                      |           |
| the                | transformations may be          | net transfer of electrons. the  |                        |                      |           |
| rearrangement      | observed in several ways and    | species that loses electrons is |                        |                      |           |
| and/or             | typically involve a change in   | oxidized, and the species that  |                        |                      |           |
| reorganization of  | energy.                         | gains electrons is reduced.     |                        |                      |           |
| atoms and/or the   | Framework Concept:              | AP Chemistry Essential          |                        |                      |           |
| transfer of        | The fact that atoms are         | knowledge 3.C.3:                |                        |                      |           |
| electrons.         |                                 | Electrochemistry shows the      |                        |                      |           |
| electrons.         | conserved, together with        | inter-conversion between        |                        |                      |           |
|                    | knowledge of the chemical       | chemical and electrical         |                        |                      |           |
| Framework Big      | properties of the elements      | energy in galvanic and          |                        |                      |           |
| Idea: Matter can   | involved, can be used to        | electrolytic cells.             |                        |                      |           |
| be understood in   | describe and predict chemical   | Electrochemistry                |                        |                      |           |
| terms of the       | reactions.                      | encompasses the study of        |                        |                      |           |
| types of atoms     |                                 | redox reactions that occur      |                        |                      |           |
| -71- 3             |                                 | redox redections that occur     |                        |                      | ĺ         |

|                   |                                                  | Curriculum Guide                 |  |   |
|-------------------|--------------------------------------------------|----------------------------------|--|---|
| present and the   | PA Academic Standards:                           | within electrochemical cells.    |  |   |
| interactions both | Science                                          | The reactions either generate    |  |   |
| between and       | 3.4.10.B: Analyze energy sources                 | electrical current in galvanic   |  |   |
| within atoms.     | and transfers of heat.                           | cells, or are driven by an       |  |   |
|                   | Evaluate energy changes in                       | externally applied electrical    |  |   |
|                   | chemical reactions.                              | potential in electrolytic cells. |  |   |
|                   | DA Carro Standarder                              | Visual representations of        |  |   |
|                   | PA Core Standards:                               | galvanic and electrolytic cells  |  |   |
|                   | Reading for Science and Technical Subjects, 6-12 | are tools of analysis to         |  |   |
|                   | 3.5 Reading Informational Text                   | identify where half-reactions    |  |   |
|                   | Students read, understand, and                   | occur and the direction of       |  |   |
|                   | respond to informational text-                   | current flow.                    |  |   |
|                   | with emphasis on                                 |                                  |  |   |
|                   | comprehension, making                            | Oxidation occurs at the          |  |   |
|                   | connections among ideas and                      | anode, and reduction occurs      |  | l |
|                   | between texts with focus on                      | at the cathode for all           |  |   |
|                   | textual evidence.                                | electrochemical cells.           |  |   |
|                   |                                                  | Framework Competency:            |  |   |
|                   | PA Core Standards: Writing for                   | Develop and use models to        |  |   |
|                   | Science and Technical Subjects,                  | explain that atoms (and          |  |   |
|                   | 6-12                                             | therefore mass) are              |  |   |
|                   | 3.6 Writing Students write for different         | conserved during a chemical      |  |   |
|                   | purposes and audiences.                          | reaction. Models can include     |  |   |
|                   | Students write clear and focused                 |                                  |  |   |
|                   | text to convey a well-defined                    | computer models, ball and        |  |   |
|                   | perspective and appropriate                      | stick models, and drawings.      |  |   |
|                   | content.                                         |                                  |  |   |
|                   |                                                  | Vocabulary:                      |  |   |
|                   |                                                  | Balance                          |  |   |
|                   |                                                  | Mole ratio                       |  |   |
|                   |                                                  | Net ionic equations              |  |   |
|                   |                                                  | Products                         |  |   |
|                   |                                                  | 1                                |  | 1 |

Chemistry Academic Page 58

Reactants

|  | Single replacement |  |  |  |
|--|--------------------|--|--|--|
|  | Redox              |  |  |  |
|  |                    |  |  |  |
|  |                    |  |  |  |
|  |                    |  |  |  |
|  |                    |  |  |  |
|  |                    |  |  |  |
|  |                    |  |  |  |
|  |                    |  |  |  |
|  |                    |  |  |  |
|  |                    |  |  |  |
|  |                    |  |  |  |
|  |                    |  |  |  |
|  |                    |  |  |  |
|  |                    |  |  |  |

| General Topic    | Anchor Descriptor PA Academic and Core Standards | Eligible Content,<br>Essential Knowledge,<br>Skills & Vocabulary | Resources & Activities | Assessments | Suggested<br>Time<br>(In Days) |
|------------------|--------------------------------------------------|------------------------------------------------------------------|------------------------|-------------|--------------------------------|
| Review and Final |                                                  |                                                                  |                        |             | 5 days                         |
| Exam             |                                                  |                                                                  |                        |             |                                |
|                  |                                                  |                                                                  |                        |             |                                |
|                  |                                                  |                                                                  |                        |             |                                |
|                  |                                                  |                                                                  |                        |             |                                |
|                  |                                                  |                                                                  |                        |             |                                |
|                  |                                                  |                                                                  |                        |             |                                |
|                  |                                                  |                                                                  |                        |             |                                |
|                  |                                                  |                                                                  |                        |             |                                |
|                  |                                                  |                                                                  |                        |             |                                |
|                  |                                                  |                                                                  |                        |             |                                |
|                  |                                                  |                                                                  |                        |             |                                |
|                  |                                                  |                                                                  |                        |             |                                |
|                  |                                                  |                                                                  |                        |             |                                |

#### **PA Core Standards:**

## Reading for Science and Technical Subjects, 6-12

## 3.5 Reading Informational Text

Students read, understand, and respond to informational text-with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.

#### Grades 9-10

#### CC.3.5.9-10.A.

Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions.

### CC.3.5.9-10.B.

Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.

### CC.3.5.9-10.C.

Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks, attending to special cases or exceptions defined in the text.

#### CC.3.5.9-10.D.

Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9–10 texts and topics.

#### CC.3.5.9-10.E.

Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy).

#### CC.3.5.9-10.F.

Analyze the author's purpose in providing an explanation, describing a procedure, or discussing an experiment in a text, defining the question the author seeks to address.

#### CC.3.5.9-10.G.

Translate quantitative or technical information expressed in words in a text into visual form (e.g., a table or chart) and translate information expressed visually or mathematically (e.g., in an equation) into words.

### CC.3.5.9-10.H.

Assess the extent to which the reasoning and evidence in a text support the author's claim or a recommendation for solving a scientific or technical problem.

### CC.3.5.9-10.I.

Compare and contrast findings presented in a text to those from other sources (including their own experiments), noting when the findings support or contradict previous explanations or accounts.

### CC.3.5.9-10.J.

By the end of grade 10, read and comprehend science/technical texts in the grades 9–10 text complexity band independently and proficiently.

#### **Grades 11-12**

### CC.3.5.11-12.A.

Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account.

#### CC.3.5.11-12.B.

Determine the central ideas or conclusions of a text; summarize complex concepts, processes, or information presented in a text by paraphrasing them in simpler but still accurate terms.

#### CC.3.5.11-12.C.

Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks; analyze the specific results based on explanations in the text.

## CC.3.5.11-12.D.

Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 11–12 texts and topics.

#### CC.3.5.11-12.E.

Analyze how the text structures information or ideas into categories or hierarchies, demonstrating understanding of the information or ideas.

#### CC.3.5.11-12.F.

Analyze the author's purpose in providing an explanation, describing a procedure, or discussing an experiment in a text, identifying important issues that remain unresolved.

#### CC.3.5.11-12.G.

Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem.

### CC.3.5.11-12.H.

Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information.

#### CC.3.5.11-12.I.

Synthesize information from a range of sources (e.g., texts, experiments, simulations) into a coherent understanding of a process, phenomenon, or concept, resolving conflicting information when possible.

#### CC.3.5.11-12.J.

By the end of grade 12, read and comprehend science/technical texts in the grades 11–12 text complexity band independently and proficiently.

#### **PA Core Standards:**

Writing for Science and Technical Subjects, 6-12

## 3.6 Writing

Students write for different purposes and audiences. Students write clear and focused text to convey a well-defined perspective and appropriate content.

#### Grades 9-10

#### CC.3.6.9-10.A.

Write arguments focused on discipline-specific content.

- Introduce precise claim(s), distinguish the claim(s) from alternate or opposing claims, and create an organization that establishes clear relationships among the claim(s), counterclaims, reasons, and evidence.
- Develop claim(s) and counterclaims fairly, supplying data and evidence for each while pointing out the strengths and limitations of both claim(s) and counterclaims in a discipline-appropriate form and in a manner that anticipates the audience's knowledge level and concerns.
- Use words, phrases, and clauses to link the major sections of the text, create cohesion, and clarify the relationships between claim(s) and reasons, between reasons and evidence, and between claim(s) and counterclaims.
- Establish and maintain a formal style and objective tone while attending to the norms and conventions of the discipline in which they are writing.
- Provide a concluding statement or section that follows from or supports the argument presented.

## CC.3.6.9-10B. \*

Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.

- Introduce a topic and organize ideas, concepts, and information to make important connections and distinctions; include formatting (e.g., headings), graphics (e.g., figures, tables), and multimedia when useful to aiding comprehension.
- Develop the topic with well-chosen, relevant, and sufficient facts, extended definitions, concrete details, quotations, or other information and examples appropriate to the audience's knowledge of the topic.
- Use varied transitions and sentence structures to link the major sections of the text, create cohesion, and clarify the relationships among ideas and concepts.
- Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style appropriate to the discipline and context as well as to the expertise of likely readers.
- Establish and maintain a formal style and objective tone while attending to the norms and conventions of the discipline in which they are writing.
- Provide a concluding statement or section that follows from and supports the information or explanation presented (e.g., articulating implications or the significance of the topic).

#### CC.3.6.9-10.C.

Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.

#### CC.3.6.9-10.D.

Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience

#### CC.3.6.9-10.E.

Use technology, including the Internet, to produce, publish, and update individual or shared writing products, taking advantage of technology's capacity to link to other information and to display information flexibly and dynamically.

#### CC.3.6.9-10.F.

Conduct short as well as more sustained research projects to answer a question (including a selfgenerated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation.

## CC.3.6.9-10.G.

Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the usefulness of each source in answering the research question; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and following a standard format for citation.

## CC.3.6.9-10.H.

Draw evidence from informational texts to support analysis, reflection, and research.

#### CC.3.6.9-10.I.

Write routinely over extended time frames (time for reflection and revision) and shorter time frames (a single sitting or a day or two) for a range of discipline-specific tasks, purposes, and audiences.

### **Grades 11-12**

#### CC.3.6.11-12.A.

Write arguments focused on discipline-specific content.

- Introduce precise, knowledgeable claim(s), establish the significance of the claim(s), distinguish the claim(s) from alternate or opposing claims, and create an organization that logically sequences the claim(s), counterclaims, reasons, and evidence.
- Develop claim(s) and counterclaims fairly and thoroughly, supplying the most relevant data and evidence for each while pointing out the strengths and limitations of both claim(s) and counterclaims in a discipline appropriate form that anticipates the audience's knowledge level, concerns, values, and possible biases.
- Use words, phrases, and clauses as well as varied syntax to link the major sections of the text, create cohesion, and clarify the relationships between claim(s) and reasons, between reasons and evidence, and between claim(s) and counterclaims.
- Establish and maintain a formal style and objective tone while attending to the norms and conventions of the discipline in which they are writing.
- Provide a concluding statement or section that follows from or supports the argument presented.

CC.3.6.11-12. B \*Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.

- Introduce a topic and organize complex ideas, concepts, and information so that each new element builds on that which precedes it to create a unified whole; include formatting (e.g., headings), graphics (e.g., figures, tables), and multimedia when useful to aiding comprehension.
- Develop the topic thoroughly by selecting the most significant and relevant facts, extended definitions, concrete details, quotations, or other information and examples appropriate to the audience's knowledge of the topic.
- Use varied transitions and sentence structures to link the major sections of the text, create cohesion, and clarify the relationships among complex ideas and concepts.
- Use precise language, domain-specific vocabulary and techniques such as metaphor, simile, and analogy to manage the complexity of the topic; convey a knowledgeable stance in a style that responds to the discipline and context as well as to the expertise of likely readers.
- Provide a concluding statement or section that follows from and supports the information or explanation provided (e.g., articulating implications or the significance of the topic)

#### CC.3.6.11-12.C.

Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.

#### CC.3.6.11-12.D.

Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience.

#### CC.3.6.11-12.E.

Use technology, including the Internet, to produce, publish, and update individual or shared writing products in response to ongoing feedback, including new arguments or information.

## CC.3.6.11-12.F.

Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation.

#### CC.3.6.11-12.G.

Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the strengths and limitations of each source in terms of the specific task, purpose, and audience; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and overreliance on any one source and following a standard format for citation.

#### CC.3.6.11-12.H.

Draw evidence from informational texts to support analysis, reflection, and research.



Write routinely over extended time frames (time for reflection and revision) and shorter time frames (a single sitting or a day or two) for a range of discipline-specific tasks, purposes, and audiences.