Physics Honors

Curriculum Guide

Dunmore School District

Dunmore, PA

Physics Honors

Prerequisite:

• Successful completion of Chemistry Honors, or Chemistry Academic, or Environmental Science

Physics Honors is an algebra-based physics course intended to introduce students to general physical science concepts. Assessment is generally limited to motion in one dimension, forces on macroscopic objects in simplified situations, mechanical forms of energy, collisions involving only two objects, uniform rotational kinematics, constant torque and equilibrium situations, wave pulses and standing waves, and direct current circuits with resistors only.

Year-at-a-glance

Subject: Physics Honors	Grade Level: 12	Date Completed: 1/23/2018
-------------------------	-----------------	---------------------------

1st Quarter

Topic	Resources	Standards
The Nature of Science, Scientific Tools and Skills	Physics Chapter 01	
Motion: Linear Kinematics	Physics Chapter 02	3.4.7.C, 3.4.12.C

2nd Quarter

Topic	Resources	Standards
Forces: Dynamics	Physics Chapter 04	3.4.10.C, 3.4.12.C
Energy: Work and Conservation of Energy	Physics Chapter 05	3.4.10.B, 3.4.10.C

3rd Quarter

Topic	Resources	Standards
Momentum and Collisions	Physics Chapter 07	3.4.10.B
Torque, Rotation, Circular Motion	Physics Chapters 05, 08	3.4.10.C, 3.4.12.C

4th Quarter

Topic	Resources	Standards
Periodic Motion and Waves	Physics Chapters 11,12	3.4.10.C, 3.4.12.C
Introduction to Electrical Circuits	Physics Chapters 16, 18,19	3.4.10.B, 3.4.10.C
Review and Final Exam		

General Topic	Anchor Descriptor	Eligible Content,	Resources &	Assessments	Suggested
	PA Academic and Core Standards	Essential Knowledge, Skills & Vocabulary	Activities		Time (In Days)
Translational	PA Academic Standards:	Essential Knowledge/Skills:	Approved textbook	Teacher prepared	30
Kinematics	Science		Physics Chapter 02	tests, quizzes, etc.	
	3.4.7.C Describe the motion of				
	an object based on its position,		Constant Velocity	Lab Reports and	
	direction and speed.		Lab	Worksheets	
	3.4.12.C Analyze the principles	Vocabulary:			
	of translational motion, velocity	Position	Inclined Plane Lab	Homework	
	and acceleration as they relate	Displacement		Assignments	
	to free fall and projectile	Distance	Egg Drop Part 1		
	motion.	Speed		Online Resources	
		Velocity		(Optional)	
	PA Core Standards:	Acceleration			
	Reading for Science and	Free Fall			
	Technical Subjects, 6-12				
	3.5 Reading Informational Text				
	Students read, understand, and				
	respond to informational text-				
	with emphasis on comprehension,				
	making connections among ideas				
	and between texts with focus on				
	textual evidence.				
	PA Core Standards: Writing for				
	Science and Technical Subjects,				
	6-12				
	3.6 Writing				
	Students write for different				
	purposes and audiences.				
	Students write clear and focused				

text to convey a well-defined perspective and appropriate content.		

General Topic	Anchor Descriptor	Eligible Content,	Resources & Activities	Assessments	Suggested
	PA Academic and Core Standards	Essential Knowledge, Skills & Vocabulary			Time (In Days)
Force Model	PA Academic Standards:	Essential Knowledge/Skills:	Approved textbook	Teacher prepared	30
	Science		Physics Chapter 04	tests, quizzes, etc.	
Interactions	3.4.10.C Know Newton's laws of	The motion of an object is			
between any two	motion (including inertia, action	determined by the	Atwood Lab	Series available	
objects can cause	and reaction) and gravity and	interactions between the	Friction Lab	assessments	
changes in one or	apply them to solve problems related to forces and mass.	object and any other objects	Friction Lab	online. (Optional)	
both of them.	related to forces and mass.	in the system.			
	3.4.12.C Describe inertia,	Construct an explanation for			
	motion, equilibrium, and	the motion of an object			
	action/reaction concepts	based on the interactions			
	through words, models and	that occur between the			
	mathematical symbols.	object and other objects in			
	PA Core Standards:	the system.			
	Reading for Science and Technical Subjects, 6-12	Newton's Second Law			
	3.5 Reading Informational Text	provides a mathematical			
	Students read, understand, and	model that describes the			
	respond to informational text-	relationship between the			
	with emphasis on comprehension,	net force on an object, the			
	making connections among ideas and between texts with focus on	mass of the object, and the			
	textual evidence.	acceleration of the object.			
		Plan and carry out			
	PA Core Standards: Writing for	investigations to show how			
	Science and Technical Subjects,	the mathematical			
	6-12	relationship of Newton's			
	3.6 Writing	Second Law of motion			

Charlenda amita fan diffanant	a a a constato de la constato de la		
Students write for different purposes and audiences.	accurately predicts the		
Students write clear and focused	relationship between the net		
text to convey a well-defined	force on objects, their mass,		
perspective and appropriate	and the resulting change in		
content.	motion.		
	Newton's Law of Universal		
	Gravitation provides a		
	mathematical model that		
	describes and predicts the		
	effects of gravitational		
	forces acting between		
	masses.		
	Use mathematical		
	representations of Newton's		
	Law of Gravitation to		
	describe and predict the		
	gravitational forces between		
	objects.		
	-		
	Vocabulary:		
	Force		
	System		
	Velocity		
	Acceleration		
	Mass		
	Net Force		
	Gravitational forces		
	Mathematical representation		
	Newton's Law of Gravitation		
			1

General Topic	Anchor Descriptor	Eligible Content,	Resources & Activities	Assessments	Suggested
	PA Academic and Core Standards	Essential Knowledge, Skills & Vocabulary			Time (In Days)
Energy Model	PA Academic Standards:	Essential Knowledge/Skills:	Approved textbook	Teacher prepared	30
	Science		Physics Chapter 05	tests, quizzes, etc.	
Interactions of	3.4.10.B Use Knowledge of	The energy an object has			
objects or systems	conservation of energy and	within a system depends on	Kinetic Energy,	Series available	
of objects can be	momentum to explain common	the object's motion and	Potential Energy Lab	assessments	
predicted and	phenomena	interactions with other		online. (Optional)	
explained using	3.4.10.C Determine the	objects in that system.	Hooke's Law Lab		
the concept of	efficiency of mechanical systems	Construct an explanation for	Conservation of Energy		
energy transfer	by applying mathematical	the energy of an object has in	Lab		
and conservation.	formulas	a system based on the			
		object's motion and the			
		object's interaction with			
		other objects in the system.			
	PA Core Standards:	other objects in the system.			
	Reading for Science and	Any change in an object's			
	Technical Subjects, 6-12	energy is the result of			
	3.5 Reading Informational Text	interactions with other			
	Students read, understand, and respond to informational text-				
	with emphasis on comprehension,	objects in a system or a			
	making connections among ideas	ideas			
	and between texts with focus on	systems, changing in the			
	textual evidence.	total energy of the systems			
		involved.			
	PA Core Standards: Writing for	Develop and use a model to			
	Science and Technical Subjects,	explain how an object's			
	6-12	energy is transferred or			
	3.6 Writing	transformed as objects			

Students write for different purposes and audiences.	interact within a system.		
Students write clear and focused	Any energy gain or loss in a		
text to convey a well-defined	system will result in a		
perspective and appropriate	corresponding energy loss or		
content.	gain in another system.		
	Identify problems and		
	* *		
	suggest design solutions to		
	optimize the energy transfer		
	between objects or systems		
	of objects.		
	Mathematical expressions		
	for the kinetic and potential		
	energy of objects allow for		
	the concept of the		
	conservation of energy to be		
	used to describe and predict		
	the behavior of objects in a		
	system.		
	Construct mathematical		
	models to show how energy		
	is transformed and		
	transferred within a system.		
	,		
	Vocabulary:		
	Kinetic energy		
	Mechanical energy		
	Potential energy		
	Energy transfer		

	System		
	Conservation of energy		

General Topic	Anchor Descriptor PA Academic and Core Standards	Eligible Content, Essential Knowledge, Skills & Vocabulary	Resources & Activities	Assessments	Suggested Time (In Days)
Momentum Model Interactions of objects or systems of objects can be predicted and explained using the concept of energy transfer and conservation.	PA Academic Standards: Science 3.4.10.B Use knowledge of conservation of energy and momentum to explain common phenomena PA Core Standards: Reading for Science and Technical Subjects, 6-12 3.5 Reading Informational Text Students read, understand, and respond to informational textwith emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence. PA Core Standards: Writing for Science and Technical Subjects, 6-12 3.6 Writing Students write for different purposes and audiences. Students write clear and focused text to convey a well-defined perspective and appropriate content.	Essential Knowledge/Skills: The transfer of energy through interactions of objects or systems of objects cause a change in the momentum of objects or systems of objects. Generate and analyze data to support the claim that the total momentum of a closed system of objects is conserved. For any system of interacting objects, the total momentum within the system changes due to transfer of momentum or energy into or out of the system. Use mathematical representations to support the claim that the total momentum of a system of	Approved textbook Physics Chapter 07 Egg Drop Part 2 Collision and Impulse Lab Conservation of Momentum Lab	Teacher prepared tests, quizzes, etc. Online Resources (optional)	30

objects is conserved through
the transfer of momentum
between objects when there
is no net force on the system.
Apply scientific and
engineering ideas to design,
evaluate, and refine a device
that minimizes the force on a
macroscopic object during a
collision.
Vocabulary:
Elastic collision
Impulse
Inelastic collision
Momentum
System

General Topic	Anchor Descriptor PA Academic and Core	Eligible Content,	Resources & Activities	Assessments	Suggested
		Essential Knowledge,			Time
	Standards	Skills & Vocabulary			(In Days)
Rotational	PA Academic Standards:	Essential Knowledge/Skills:	Approved textbook	Teacher prepared	20
Mechanics	Science		Physics Chapters 05, 08	tests, quizzes, etc.	
	3.4.10.C Identify elements of	The basic laws of mechanics			
	simple machines in compound	have an extension when	Torque Lab	Series available	
	machines	equivalent principles are		assessments	
		applied to rotation. Actual	Equilibrium Lab	online. (Optional)	
	3.4.12.C Analyze the principles	objects have dimensions and			
	of rotational motion to solve	they require the expansion			
	problems relating to angular	of the point particle model			
	momentum and torque.	to consider the possibility of			
	Interpret a model that illustrates	different points on an object			
	circular motion and	having different states of			
	acceleration.	motion and/or different			
	Propose modifications to	velocities.			
	specific mechanical power	Apply scientific and			
	systems that will improve their	engineering ideas to design,			
	efficiency.	evaluate, and refine a device			
	PA Core Standards:	that reduces the force			
	Reading for Science and	required to perform a			
	Technical Subjects, 6-12	mechanical task.			
	3.5 Reading Informational Text				
	Students read, understand, and	Vocabulary:			
	respond to informational text-	Rotational Displacement			
	with emphasis on comprehension,	Rotational Velocity			
	making connections among ideas	Rotational Acceleration			
	and between texts with focus on	Rotational Inertia			
	textual evidence.	Torque			
		Mechanical Advantage			
	PA Core Standards: Writing for	Simple Machine			
	Science and Technical Subjects,	Centripetal			

6-12		
3.6 Writing		
Students write for different		
purposes and audiences.		
Students write clear and focused		
text to convey a well-defined		
perspective and appropriate		
content.		

General Topic	Anchor Descriptor PA Academic and Core Standards	Eligible Content, Essential Knowledge, Skills & Vocabulary	Resources & Activities	Assessments	Suggested Time (In Days)
Periodic Motion	PA Academic Standards:	Essential Knowledge/Skills:	Approved textbook	Teacher prepared	20
and Waves	Science		Physics Chapters 11,12	tests, quizzes, etc.	
	3.4.10.C Describe sound effects	The speed of a wave in any			
Waves are a	and light effects.	medium is the product of	Waves Lab	Series available	
repeating pattern	244265	the wave's frequency and		assessments	
of motion that	3.4.12.C Evaluate wave	wavelength.		online. (Optional)	
transfers energy	properties of frequency, wavelength and speed as	Analyze and interpret data to			
from place to	applied to sound and light	support the claim that the			
place without	through different media.	speed of a wave in a medium			
overall		is the product of the wave's			
displacement of		frequency and the wave's			
matter.	PA Core Standards: Reading for Science and	wavelength.			
	Technical Subjects, 6-12 3.5 Reading Informational Text	Wave transmission,			
	Students read, understand, and	reflection, refraction, and/or			
	respond to informational text-	absorption occurs when			
	with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.	waves travel between two			
		different mediums.			
		Construct explanations for			
		the transmission, reflection,			
	PA Core Standards: Writing for Science and Technical Subjects, 6-12	refraction and/or absorption			
		of waves as they pass from			
		one medium to another			
	3.6 Writing Students write for different	medium.			
	purposes and audiences. Students write clear and focused	Wave transmission,			
	text to convey a well-defined perspective and appropriate	reflection, refraction, and/or			

content.	absorption occurs when		
	waves travel between two		
	different mediums.		
	Develop a claim and		
	reasoning supported by		
	evidence that describes the		
	behavior of a wave as it		
	passes from one medium to		
	another medium.		
	Objects have natural		
	frequencies and when they		
	are forced to vibrate at a		
	natural frequency they		
	resonate with large		
	vibrations.		
	Construct an explanation for		
	the application of resonance		
	in everyday phenomena (e.g.,		
	waves in a stretched string,		
	speech, the design of all		
	musical instruments).		
	Vocabulary:		
	Period		
	Frequency		
	Wave Wavelength		
	Medium		
	IVICAIAIII		

Absorption	
Reflection	
Refraction	
Transmission	
Resonance	
Constructive interference	
Destructive interference	
Encode	
Superposition	
Electromagnetic wave	
Particle model	
Photon	
Wave model	
Pulses	

General Topic	Anchor Descriptor	Eligible Content,	Resources & Activities	Assessments	Suggested
	PA Academic and Core	Essential Knowledge,			Time
	Standards	Skills & Vocabulary			(In Days)
Electricity and	PA Academic Standards:	Essential Knowledge/Skills:	Approved textbook	Teacher prepared	10
Magnetism	Science		Physics Chapters 16,	tests, quizzes, etc.	
(Optional)	3.4.10.B Explain resistance,	Coulomb's Law provides a	18,19		
	current and electro-motive force	mathematical model that		Series available	
	(Ohm's Law).	describes and predicts the	Coulomb's Law Lab	assessments	
		effect of electrostatic forces		online. (Optional)	
	3.4.10.C Identify the relationship	acting between electrically	Ohm's Law Lab		
	of electricity and magnetism as	charged objects			
	two aspects of a single	Use mathematical			
	electromagnetic force.				
	PA Core Standards:	representations of Coulomb's			
	Reading for Science and	Law to describe and predict			
	Technical Subjects, 6-12 3.5 Reading Informational Text Students read, understand, and	the electrostatic forces			
		between objects.			
	respond to informational text-	Vocabulary:			
	with emphasis on comprehension,	Electrostatic force			
	making connections among ideas	Coulomb's Law			
	and between texts with focus on	Ohm's Law			
	textual evidence.	Electro-motive force			
		Resistance			
	PA Core Standards: Writing for	Current			
	Science and Technical Subjects,	Magnetic Induction			
	6-12	Electromagnetic Force			
	3.6 Writing				
	Students write for different				
	purposes and audiences.				
	Students write clear and focused				
	text to convey a well-defined				
	perspective and appropriate content.				
	content.				

General ⁻	Topic	Anchor Descriptor PA Academic and Core Standards	Eligible Content, Essential Knowledge, Skills & Vocabulary	Resources & Activities	Assessments	Suggested Time (In Days)
Review and F	Final Exam					10

PA Core Standards:

Reading for Science and Technical Subjects, 6-12

3.5 Reading Informational Text

Students read, understand, and respond to informational text-with emphasis on comprehension, making connections among ideas and between texts with focus on textual evidence.

Grades 9-10

CC.3.5.9-10.A.

Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions.

CC.3.5.9-10.B.

Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.

CC.3.5.9-10.C.

Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks, attending to special cases or exceptions defined in the text.

CC.3.5.9-10.D.

Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9–10 texts and topics.

CC.3.5.9-10.E.

Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy).

CC.3.5.9-10.F.

Analyze the author's purpose in providing an explanation, describing a procedure, or discussing an experiment in a text, defining the question the author seeks to address.

CC.3.5.9-10.G.

Translate quantitative or technical information expressed in words in a text into visual form (e.g., a table or chart) and translate information expressed visually or mathematically (e.g., in an equation) into words.

CC.3.5.9-10.H.

Assess the extent to which the reasoning and evidence in a text support the author's claim or a recommendation for solving a scientific or technical problem.

CC.3.5.9-10.I.

Compare and contrast findings presented in a text to those from other sources (including their own experiments), noting when the findings support or contradict previous explanations or accounts.

CC.3.5.9-10.J.

By the end of grade 10, read and comprehend science/technical texts in the grades 9–10 text complexity band independently and proficiently.

Grades 11-12

CC.3.5.11-12.A.

Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account.

CC.3.5.11-12.B.

Determine the central ideas or conclusions of a text; summarize complex concepts, processes, or information presented in a text by paraphrasing them in simpler but still accurate terms.

CC.3.5.11-12.C.

Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks; analyze the specific results based on explanations in the text.

CC.3.5.11-12.D.

Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 11–12 texts and topics.

CC.3.5.11-12.F.

Analyze how the text structures information or ideas into categories or hierarchies, demonstrating understanding of the information or ideas.

CC.3.5.11-12.F.

Analyze the author's purpose in providing an explanation, describing a procedure, or discussing an experiment in a text, identifying important issues that remain unresolved.

CC.3.5.11-12.G.

Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem.

CC.3.5.11-12.H.

Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information.

CC.3.5.11-12.I.

Synthesize information from a range of sources (e.g., texts, experiments, simulations) into a coherent understanding of a process, phenomenon, or concept, resolving conflicting information when possible.

CC.3.5.11-12.J.

By the end of grade 12, read and comprehend science/technical texts in the grades 11–12 text complexity band independently and proficiently.

PA Core Standards:

Writing for Science and Technical Subjects, 6-12

3.6 Writing

Students write for different purposes and audiences. Students write clear and focused text to convey a well-defined perspective and appropriate content.

Grades 9-10

CC.3.6.9-10.A.

Write arguments focused on discipline-specific content.

- Introduce precise claim(s), distinguish the claim(s) from alternate or opposing claims, and create an organization that establishes clear relationships among the claim(s), counterclaims, reasons, and evidence.
- Develop claim(s) and counterclaims fairly, supplying data and evidence for each while pointing out the strengths and limitations of both claim(s) and counterclaims in a discipline-appropriate form and in a manner that anticipates the audience's knowledge level and concerns.
- Use words, phrases, and clauses to link the major sections of the text, create cohesion, and clarify the relationships between claim(s) and reasons, between reasons and evidence, and between claim(s) and counterclaims.
- Establish and maintain a formal style and objective tone while attending to the norms and conventions of the discipline in which they are writing.
- Provide a concluding statement or section that follows from or supports the argument presented.

CC.3.6.9-10B. *

Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.

- Introduce a topic and organize ideas, concepts, and information to make important connections and distinctions; include formatting (e.g., headings), graphics (e.g., figures, tables), and multimedia when useful to aiding comprehension.
- Develop the topic with well-chosen, relevant, and sufficient facts, extended definitions, concrete details, quotations, or other information and examples appropriate to the audience's knowledge of the topic.
- Use varied transitions and sentence structures to link the major sections of the text, create cohesion, and clarify the relationships among ideas and concepts.
- Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style appropriate to the discipline and context as well as to the expertise of likely readers.
- Establish and maintain a formal style and objective tone while attending to the norms and conventions of the discipline in which they are writing.

• Provide a concluding statement or section that follows from and supports the information or explanation presented (e.g., articulating implications or the significance of the topic).

CC.3.6.9-10.C.

Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.

CC.3.6.9-10.D.

Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience

CC.3.6.9-10.E.

Use technology, including the Internet, to produce, publish, and update individual or shared writing products, taking advantage of technology's capacity to link to other information and to display information flexibly and dynamically.

CC.3.6.9-10.F.

Conduct short as well as more sustained research projects to answer a question (including a selfgenerated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation.

CC.3.6.9-10.G.

Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the usefulness of each source in answering the research question; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and following a standard format for citation.

CC.3.6.9-10.H.

Draw evidence from informational texts to support analysis, reflection, and research.

CC.3.6.9-10.I.

Write routinely over extended time frames (time for reflection and revision) and shorter time frames (a single sitting or a day or two) for a range of discipline-specific tasks, purposes, and audiences.

Grades 11-12

CC.3.6.11-12.A.

Write arguments focused on discipline-specific content.

- Introduce precise, knowledgeable claim(s), establish the significance of the claim(s), distinguish the claim(s) from alternate or opposing claims, and create an organization that logically sequences the claim(s), counterclaims, reasons, and evidence.
- Develop claim(s) and counterclaims fairly and thoroughly, supplying the most relevant data and evidence for each while pointing out the strengths and limitations of both claim(s) and counterclaims in a discipline appropriate form that anticipates the audience's knowledge level, concerns, values, and possible biases.
- Use words, phrases, and clauses as well as varied syntax to link the major sections of the text, create cohesion, and clarify the relationships between claim(s) and reasons, between reasons and evidence, and between claim(s) and counterclaims.
- Establish and maintain a formal style and objective tone while attending to the norms and conventions of the discipline in which they are writing.
- Provide a concluding statement or section that follows from or supports the argument presented.

CC.3.6.11-12. B *Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.

- Introduce a topic and organize complex ideas, concepts, and information so that each new element builds on that which precedes it to create a unified whole; include formatting (e.g., headings), graphics (e.g., figures, tables), and multimedia when useful to aiding comprehension.
- Develop the topic thoroughly by selecting the most significant and relevant facts, extended definitions, concrete details, quotations, or other information and examples appropriate to the audience's knowledge of the topic.
- Use varied transitions and sentence structures to link the major sections of the text, create cohesion, and clarify the relationships among complex ideas and concepts.
- Use precise language, domain-specific vocabulary and techniques such as metaphor, simile, and analogy to manage the complexity of the topic; convey a knowledgeable stance in a style that responds to the discipline and context as well as to the expertise of likely readers.
- Provide a concluding statement or section that follows from and supports the information or explanation provided (e.g., articulating implications or the significance of the topic)

CC.3.6.11-12.C.

Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.

CC.3.6.11-12.D.

Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience.

CC.3.6.11-12.E.

Use technology, including the Internet, to produce, publish, and update individual or shared writing products in response to ongoing feedback, including new arguments or information.

CC.3.6.11-12.F.

Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation.

CC.3.6.11-12.G.

Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the strengths and limitations of each source in terms of the specific task, purpose, and audience; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and overreliance on any one source and following a standard format for citation.

CC.3.6.11-12.H.

Draw evidence from informational texts to support analysis, reflection, and research.

CC.3.6.11-12.I.

Write routinely over extended time frames (time for reflection and revision) and shorter time frames (a single sitting or a day or two) for a range of discipline-specific tasks, purposes, and audiences.