AP Chemistry

Curriculum Guide

Dunmore School District

Dunmore, PA

AP Chemistry

Prerequisite:

• Chemistry

AP Chemistry is equivalent to the preparation given in the first two semesters of college general chemistry. The coursework is structured around the enduring understandings within the big ideas as described in the AP Chemistry Curriculum Framework. **S**pecial emphasis will be placed on the seven science practices, which capture important aspects of the work that scientists engage in, with learning objectives that combine content with inquiry and reasoning skills. AP Chemistry is offered to all students that complete first-year, general chemistry, which has a strong laboratory component.

<u>Year-at-a-glance</u>

Subject: AP Chemistry	Grade Level: 12	Date Completed: 3/28/2018

1 st	Quarter
-----------------	---------

Торіс	Resources/Days	Standards
Summer Assignment review topics. Matter, measuring, and problem-solving; Atoms and elements;	Teacher prepared. Tro. <i>A Molecular Approach, 3rd Edition,</i> Text chapters 1 to 3 4 days	3.5, 3.6
Molecules, compounds, and chemical equations;	Teacher prepared. Tro. <i>A Molecular Approach, 3rd Edition,</i> Text chapter 4 14 days	1.1, 1.2, 1.3, 1.4, 1.17, 1.18, 1.19, 1.20, 3.1, 3.2, 3.3, 3.4, 3.8, 3.9
Gases	Teacher prepared. Tro. <i>A Molecular Approach, 3rd Edition,</i> Text chapter 5 13 days	2.4, 2.5, 2.6, 2.12
Thermochemistry	Teacher prepared. Tro. <i>A Molecular Approach, 3rd Edition,</i> Text chapter 6 13 days	3.11, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8
End of Quarter review exam	Teacher prepared. Tro. <i>A Molecular Approach, 3rd Edition,</i> Text chapters 1 to 6 1 day	Above

Торіс	Resources/Days	Standards
Thermodynamics	Teacher prepared. Tro. <i>A Molecular Approach, 3rd Edition,</i> Text chapter 17 12 days	5.12, 5.13, 5.14, 5.15
Atomic theory; Periodic properties; Spectrophotometry	Teacher prepared. Tro. <i>A Molecular Approach, 3rd Edition,</i> Text chapter 7 and 8 13 days	1.5, 1.6, 1.7, 1.8, 1.9, 1.10, 1.11, 1.12, 1.13, 1.14, 1.15, 1.16
Bonding; Coulomb's law	Teacher prepared. Tro. <i>A Molecular Approach, 3rd Edition,</i> Text chapters 9 and 10 13 days	2.1, 2.17, 2.18, 2.19, 2.20, 2.26, 2.21, 2.22, 2.3 2.14, 2.15, 2.23, 2.24, 2.25, 2.27, 2.28, 2.29, 2.30, 2.31, 2.32, 3.10, 5.11
Intermolecular Forces	Teacher prepared. Tro. <i>A Molecular Approach, 3rd Edition,</i> Text chapters 11 and 12 6 days	2.7, 2.8, 2.15, 2.10, 2.11, 2.13, 2.16, 5.9, 5.10, 5.11, 6.24
End of Quarter review exam	Teacher prepared. Tro. <i>A Molecular Approach, 3rd Edition,</i> Text chapters 7 to 12, 17 1 day	Above

Торіс	Resources/Days	Standards	
Kinetics	Teacher prepared. Tro. <i>A Molecular Approach, 3rd Edition,</i> Text chapter 13 12 days	4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.8, 4.7, 4.9	
Equilibrium	Teacher prepared. Tro. <i>A Molecular Approach, 3rd Edition,</i> Text chapter 14 12 days	5.16, 5.17, 5.18, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 6.10	
Acids and Bases; Buffers; Titrations	Teacher prepared. Tro. <i>A Molecular Approach, 3rd Edition,</i> Text chapter 15 and 16 12 days	1.20, 3.7, 6.11, 6.12, 6.13, 6.14, 6.15, 6.16, 6.17, 6.18, 6.19, 6.20	
Ksp; Electrochemistry; K and Delta G	Teacher prepared. Tro. <i>A Molecular Approach, 3rd Edition,</i> Text chapter 16 and 18 8 days	3.8, 3.9, 3.12, 3.13, 6.21, 6.22, 6.23, 6.25	
End of Quarter review exam	Teacher prepared. Tro. <i>A Molecular Approach, 3rd Edition,</i> Text chapters 13 to 16, 18 1 day	Above	

Торіс	Resources/Days	Standards
Exam Review	Teacher prepared. Tro. <i>A Molecular Approach, 3rd Edition,</i> Text chapters 1 to 18 25 days	
Introduction to organic chemistry; Alkane nomenclature	Teacher prepared 8 days	None
Alkene, alkyne, and cylcoalkane nomenclature, cis/trans and E/Z isomers	Teacher prepared 7 days	None
Final Exams	Teacher prepared 5 days	

General Topic	AP Standards	Learning Objective, Skills & Vocabulary	Resources & Activities	Assessments	Suggested Time (In Days)
Big Idea 1: The	Essential knowledge 1.A.1:	Learning Objective for EK	Teacher prepared	Teacher prepared	See Year-
chemical	molecules are composed of	1.A.1	Tro. A Molecular		at-a-glance
elements are fundamental building materials of matter, and all matter can be understood in terms of arrangements of atoms. These atoms retain their identity in chemical reactions. The atomic theory of matter is the most fundamental premise of chemistry. A limited number of chemical elements exist, and the fundamental unit of the	 specific combinations of atoms; different molecules are composed of combinations of different elements and of combinations of the same elements in differing amounts and proportions. A. The average mass of any large number of atoms of a given element is always the same for a given element. B. A pure sample contains particles (or units) of one specific atom or molecule; a mixture contains particles (or units) of more than one specific atom or molecule. C. Because the molecules of a particular compound are always composed of the identical combination 	LA.1 LO 1.1 The student can justify the observation that the ratio of the masses of the constituent elements in any pure sample of that compound is always identical on the basis of the atomic molecular theory. Vocabulary for Big Idea 1: absorbance atomic size cathode ray tube chromatography combustion Coulomb's Law crystallization distillation end point equivalence point filtration frequency gold foil experiment hydrates	Approach, 3 rd Edition, textbook chapter 4		

Curriculum Guide

		Curriculum Guide		
chemical	of atoms in a specific	insoluble		
identities they	ratio, the ratio of the	ionization energy		
carry is the	masses of the	isotope		
atom. Although	constituent elements in	law of conservation of matter		
atoms represent	any pure sample of	mass ratio		
the foundational	that compound is	mass spec		
level of	always the same.	molecules		
chemistry,	D. Pairs of elements that	neutralization		
observations of	form more than one	photoelectron spectroscopy		
chemical	type of molecule are	(PES)		
properties are	nonetheless limited by	photon		
always made on	their atomic nature to	planck's constant		
collections of	combine in whole	precipitate		
atoms, and	number ratios. This	soluble		
macroscopic	discrete nature can be			
systems involve	confirmed by	spec 20		
such large	calculating the	spectral lines		
numbers that	difference in mass	speed of light		
they are	percent ratios between	strong acid		
typically counted in the	such types of molecules.	titration		
	molecules.	transmittance		
unit known as the mole rather		wavelength		
than as		weak acid		
individual	Essential knowledge 1.A.2:		Teacher prepared,	
atoms. For	Chemical analysis provides a	Learning Objectives for EK	Tro. A Molecular	
elements, many	method for determining the	1.A.2:	Approach, 3 rd Edition,	
chemical and	relative number of atoms in a	LO 1.2 The student is able to	textbook chapter 4	
physical	substance, which can be used	select and apply	•	
properties	to identify the substance or	mathematical routines to		
exhibit	determine its purity.	mass data to identify or		
predictable		infer the composition of		
periodicity as a	A. Because compounds	pure substances and/or		
	are composed of atoms			

		Curriculum Guide		
function of atomic number. In all chemical and physical changes, atoms are conserved.	with known masses, there is a correspondence between the mass percent of the elements in a	mixtures. LO 1.3 The student is able to select and apply mathematical relationships to mass data in order to		
Enduring understanding 1.A: All matter is made of atoms. There are a limited number of types of atoms; these are the elements. The concept of atoms as the building blocks of all matter is a fundamental premise of the discipline of chemistry. This concept provides the foundation for conceptualizing,	 compound and the relative number of atoms of each element. B. An empirical formula is the lowest whole number ratio of atoms in a compound. Two molecules of the same elements with identical mass percent of their constituent atoms will have identical empirical formulas. C. Because pure compounds have a specific mass percent of each element, experimental measurements of mass percents can be used to verify the purity of compounds. 	justify a claim regarding the identity and/or estimated purity of a substance.	Teacher prepared, Tro. <i>A Molecular</i> <i>Approach, 3rd Edition,</i> textbook chapter 4	
interpreting, and explaining the macroscopic properties and transformations	Essential knowledge 1.A.3: The mole is the fundamental unit for counting numbers of particles on the macroscopic level and allows quantitative	Learning Objective for EK 1.A.3: LO 1.4 The student is able to connect the number of		

AP Chemistry

		Curriculum Guide		
observed inside	connections to be drawn	particles, moles, mass, and		
and outside the	between laboratory	volume of substances to one		
laboratory in	experiments, which occur at the	another, both qualitatively		
terms of the	macroscopic level, and chemical	and quantitatively.		
structure and	processes, which occur at the atomic level.			
properties of	A. Atoms and molecules			
the constituent	interact with one			
materials. The	another on the atomic			
concept of the	level. Balanced			
mole enables	chemical equations			
chemists to	give the number of			
relate measured	particles that react and			
masses in the	the number of particles			
laboratory to	produced. Because of			
the number of	this, expressing the			
particles	amount of a substance			
present in a	in terms of the number			
sample. These	of particles, or moles of			
two concepts	particles, is Essential to			
also provide the	understanding			
basis for the	chemical processes.			
experimental	B. Expressing the mass of			
determination	an individual atom or			
of the purity of	molecule in atomic			
a sample	mass unit (amu) is			
through	useful because the			
chemical	average mass in amu of			
analysis. The	one particle (atom or			
most important	molecule) of a			
aspect of	substance will always			
chemistry is not	be numerically equal to			
the	the molar mass of that			
memorization of	substance in grams.			
		1	1	

AP Chemistry

		Curriculum Guide	
the laws and	C. Avogadro's number		
definitions, but	provides the		
rather the	connection between		
ability to explain	the number of moles in		
how the laws	a pure sample of a		
and	substance and the		
relationships	number of constituent		
arise because of	particles (or units) of		
the atomic	that substance.		
nature of	D. Thus, for any sample of		
matter.	a pure substance, there		
	is a specific numerical		
	relationship between		
	the molar mass of the		
	substance, the mass of		
	the sample, and the		
	number of particles (or		
	units) present.		

General Topic	AP Standards	Learning Objective, Skills & Vocabulary	Resources & Activities	Assessments	Suggested Time (In Days)
Enduring understanding 1.B: The atoms of each element have unique structures arising from interactions between electrons and nuclei. The shell model arises from experimental data. The shell model forms a basis for understanding the relative energies of electrons in an atom. The model is based on Coulomb's law and qualitatively predicts ionization energies, which can be measured	Essential knowledge 1.B.1: The atom is composed of negatively charged electrons, which can leave the atom, and a positively charged nucleus that is made of protons and neutrons. the attraction of the electrons to the nucleus is the basis of the structure of the atom. Coulomb's law is qualitatively useful for understanding the structure of the atom. A. Based on Coulomb's law, the force between two charged particles is proportional to the magnitude of each of the two charges (q ₁ and q ₂), and inversely proportional to the square of the distance, r, between them. (Potential energy is proportional to q ₁ q ₂ /r.) If the two charges are of opposite sign, the force between them is attractive; if they are of	Learning Objectives for EK 1.B.1: LO 1.5 The student is able to explain the distribution of electrons in an atom or ion based upon data. LO 1.6 The student is able to analyze data relating to electron energies for patterns and relationships.	Teacher prepared, Tro. <i>A Molecular</i> <i>Approach, 3rd Edition,</i> textbook chapters 7 and 8	Teacher prepared	See Year-at- a-glance

AP Chemistry

			Curriculum Guide			
in the lab.		the same sign, the				
Understanding		force is repulsive.				
how the shell	В.	The first ionization				
model is		energy is the minimum				
consistent with		energy needed to				
the experimental		remove the least tightly				
data is a key		held electron from an				
learning goal for		atom or ion. In general,				
this content,		the ionization energy of				
beyond simple		any electron in an atom				
memorization of		or ion is the minimum				
the patterns of		energy needed to				
electron		remove that electron				
configurations.		from the atom or ion.				
	C.	The relative magnitude				
		of the ionization energy				
		can be estimated				
		through qualitative				
		application of				
		Coulomb's law. The				
		farther an electron is				
		from the nucleus, the				
		lower its ionization				
		energy. When				
		comparing two species				
		with the same				
		arrangement of				
		electrons, the higher				
		the nuclear charge, the				
		higher the ionization				
		energy of an electron in				
		a given subshell.				
	D.	Photoelectron				
L				1	1	1

 	Curriculum Guide	 	
spectroscopy (PES)			
provides a useful			
means to engage			
students in the use of			
quantum mechanics to			
interpret spectroscopic			
data and extract			
information on atomic			
structure from such			
data. In particular, low-			
resolution PES of atoms			
provides direct			
evidence for the shell			
model. Light consists of			
photons, each of which			
has energy E = hv,			
where h is Planck's			
constant and v is the			
frequency of the light.			
In the photoelectric			
effect, incident light			
ejects electrons from a			
material. This requires			
the photon to have			
sufficient energy to			
eject the electron.			
Photoelectron			
spectroscopy			
determines the energy			
needed to eject			
electrons from the			
material. Measurement			
of these energies			

		Curriculum Guide			
	provides a method to				
	deduce the shell				
	structure of an atom.				
	The intensity of the				
	photoelectron signal at				
	a given energy is a				
	measure of the number				
	of electrons in that				
	energy level.				
	E. The electronic				
	structure of atoms with				
	multiple electrons can				
	be inferred from				
	evidence provided by				
	PES. For instance, both				
	electrons in He are				
	identical, and they are				
	both roughly the same				
	distance from the				
	nucleus as in H, while				
	there are two shells of				
	electrons in Li, and the				
	outermost electron is				
	further from the				
	nucleus than in H.				
	Essential knowledge 1.B.2:	Learning Objectives for EK	Teacher prepared		
	The electronic structure of the	1.B.2:	Tro. A Molecular		
	atom can be described using an	LO 1.7 The student is able to	<i>Approach, 3rd Edition,</i> textbook chapters 7		
	electron configuration that	describe the electronic	and 8		
	reflects the concept of electrons	structure of the atom, using			
	in quantized energy levels or	PES data, ionization energy			
	shells; the energetics of the	data, and/or Coulomb's law			
L	1		1	1	I]

		Curriculum Guide		
	ons in the atom can be	to construct explanations of		
	stood by consideration of	how the energies of		
	mb's law.	electrons within shells in		
A.	Electron configurations	atoms vary.		
	provide a method for			
	describing the	LO 1.8 The student is able to		
	distribution of	explain the distribution of		
	electrons in an atom or	electrons using Coulomb's		
	ion.	law to analyze measured		
B.	Each electron in an	energies.		
	atom has a different			
	ionization energy,			
	which can be			
	qualitatively explained			
	through Coulomb's			
	law.			
C.				
	and ions, the electrons			
	can be thought of as			
	being in "shells" and			
	"subshells," as			
	indicated by the			
	relatively close			
	ionization energies			
	associated with some			
	groups of electrons.			
	Inner electrons are			
	called core electrons,			
	and outer electrons are			
	called valence			
	electrons.			
D.	Core electrons are			
	generally closer to the			

	Curriculum Guide	
nucleus than valence		
electrons, and they are		
considered to "shield"		
the valence electrons		
from the full		
electrostatic attraction		
of the nucleus. This		
phenomenon can be		
used in conjunction		
with Coulomb's law to		
explain/rationalize/pre		
dict relative ionization		
energies. Differences in		
electron-electron		
repulsion are		
responsible for the		
differences in energy		
between electrons in		
different orbitals in the		
same shell.		

General Topic	AP Standards	Learning Objective, Skills & Vocabulary	Resources & Activities	Assessments	Suggested Time (In Days)
Enduring understanding 1.C: Elements display periodicity in their properties when the elements are organized according to increasing atomic number. This periodicity can be explained by the regular variations that occur in the electronic structures of atoms. Periodicity is a useful principle for understanding properties and predicting trends in properties. Its modern-day uses	 Essential knowledge 1.C.1: Many properties of atoms exhibit periodic trends that are reflective of the periodicity of electronic structure. A. The structure of the periodic table is a consequence of the pattern of electron configurations and the presence of shells (and subshells) of electrons in atoms. B. Ignoring the few exceptions, the electron configuration for an atom can be deduced from the element's position in the periodic table. X X Memorization of exceptions to the Aufbau principle is beyond the scope of this course and the AP Exam. Rationale: The mere rote recall of the exceptions does not match the goals of the 	Learning Objectives for EK 1.C.1: LO 1.9 The student is able to predict and/or justify trends in atomic properties based on location on the periodic table and/or the shell model. LO 1.10 Students can justify with evidence the arrangement of the periodic table and can apply periodic properties to chemical reactivity. LO 1.11 The student can analyze data, based on periodicity and the properties of binary compounds, to identify patterns and generate hypotheses related to the molecular design of compounds for which data are not supplied.	Teacher prepared, Tro. A Molecular Approach, 3 rd Edition, textbook chapters 7 and 8	Teacher prepared	See Year-at- a-glance

Curriculum Guide

range from	curriculum revision. If given an		
examining the	exception on the AP Exam,		
composition of	students will be responsible for		
materials to	providing possible reasons for		
generating ideas	the exceptions based on		
for designing	theory.		
new materials.	C. For many atomic		
Although a	properties, trends		
simple shell	within the periodic		
model is not the	table (and relative		
currently	values for different		
accepted best	atoms and ions) can be		
model of atomic	qualitatively		
structure, it is an	understood and		
extremely useful	explained using		
model that can	Coulomb's law, the		
be used	shell model, and the		
qualitatively to	concept of		
explain and/ or	shielding/effective		
predict many	nuclear charge. These		
atomic	properties include:		
properties and	a. First ionization		
trends in atomic	energy		
properties. In	b. Atomic and ionic		
particular, the	radii		
arrangement of	c. Electronegativity		
electrons into	d. Typical ionic		
shells and	charges		
subshells is	D. Periodicity is a useful		
reflected in the	tool when designing		
structure of the	new molecules or		
periodic table	materials, since		
and in the	replacing an element of		

		Curriculum Guide		
periodicity of	one group with another			
many atomic	of the same group may			
properties. Many	lead to a new			
of these trends in	substance with similar			
atomic	properties. For			
properties are	instance, since SiO ₂ can			
important for	be a ceramic, SnO ₂ may			
understanding	be as well.			
the properties of		Learning Objective for EK		
molecules, and in	Essential knowledge 1.C.2:	1.C.2:		
being able to	The currently accepted best		Teacher prepared,	
explain how the	model of the atom is based on	LO 1.12 The student is able	Tro. A Molecular	
structure of the	the quantum mechanical model. A. Coulomb's law is the	to explain why a given set of	Approach, 3 rd Edition,	
constituent	basis for describing the	data suggests, or does not	textbook chapters 7	
molecules or	energy of interaction	suggest, the need to refine	and 8	
atoms relates to	between protons and	the atomic model from a		
the macroscopic	electrons.	classical shell model with		
properties of	B. Electrons are not	the quantum mechanical		
materials.	considered to follow	model.		
Students should	specific orbits.			
be aware that	Chemists refer to the			
the shells reflect	region of space in			
the quantization	which an electron is			
inherent in	found as an orbital.			
quantum	C. Electrons in atoms have			
mechanics and	an intrinsic property			
that the labels	known as spin that can			
given to the	result in atoms having a			
atomic orbitals	magnetic moment.			
are examples of	There can be at most			
the quantum numbers used to	two electrons in any			
label the	orbital, and these			
			1	

		Curriculum Guide		
resulting	electrons must have			
quantized states.	opposite spin.			
Being aware of	D. The quantum			
the quantum	mechanical (QM)			
mechanical	model addresses			
model as the	known problems with			
currently	the classical shell			
accepted best	model and is also			
model for the	consistent with atomic			
atom is	electronic structures			
important for	that correspond with			
scientific literacy.	the periodic table.			
	E. The QM model can be			
	approximately solved			
	using computers and			
	serves as the basis for			
	software that			
	calculates the structure			
	and reactivity of			
	molecules.			
	XX Assignment of quantum			
	numbers to electrons is beyond			
	the scope of this course and			
	the AP Exam.			
	Rationale: Assignment of			
	quantum numbers to electrons			
	does not increase students'			
	conceptual understanding of			
	quantum theory.			

General Topic	AP Standards	Learning Objective, Skills & Vocabulary	Resources & Activities	Assessments	Suggested Time (In Days)
Enduring understanding 1.D: Atoms are so small that they are difficult to study directly; atomic models are constructed to explain experimental data on collections of atoms. Because the experimental measurement of ionization energy provides a window into the overall electronic structure of the atom, this content provides rich opportunities to explore how scientific models can be	Essential knowledge 1.D.1: As is the case with all scientific models, any model of the atom is subject to refinement and change in response to new experimental results. in that sense, an atomic model is not regarded as an exact description of the atom, but rather a theoretical construct that fits a set of experimental data. A. Scientists use experimental results to test scientific models. When experimental results are not consistent with the predictions of a scientific model, the model must be revised or replaced with a new model that is able to predict/explain the new experimental results. A robust scientific model is one that can be used to explain/ predict numerous results over	Learning Objective for EK 1.D.1: LO 1.13 Given information about a particular model of the atom, the student is able to determine if the model is consistent with specified evidence.	Teacher prepared, Tro. A Molecular Approach, 3 rd Edition, textbook chapters 7 and 8	Teacher prepared	See Year-at- a-glance

AP Chemistry

		Curriculum Guide	 	
constructed and refined in response to available data. The modern use of mass spectrometry provides another example of how experimental data can be used to test or reject a scientific model.	a wide range of experimental circumstances. B. The construction of a shell model of the atom through ionization energy information provides an opportunity to show how a model can be refined and changed as additional information is considered. Essential knowledge 1.D.2: An early model of the atom stated that all atoms of an element are identical. mass spectrometry data demonstrate evidence that contradicts this early model. A. Data from mass spectrometry demonstrate evidence that an early model of the atom (Dalton's model) is incorrect; these data then require	Learning Objective for EK 1.D.2: LO 1.14 The student is able to use data from mass spectrometry to identify the elements and the masses of individual atoms of a specific element.		
	demonstrate evidence that an early model of the atom (Dalton's model) is incorrect;			

Curriculum Saide								
can be used to probe electronic								
structure. The amount of light								
absorbed by a solution can be								
used to determine the								
concentration of the absorbing								
molecules in that solution, via								
the Beer-Lambert law.								

Curriculum Guide								
General Topic	AP Standards	Learning Objective, Skills & Vocabulary	Resources & Activities	Assessments	Suggested Time (In Days)			
Enduring understanding 1.E: Atoms are conserved in physical and chemical processes. The conservation of mass in chemical and physical transformations is a fundamental concept, and is a reflection of the atomic model of matter. This concept plays a key role in much of chemistry, in both quantitative determinations of quantities of materials involved in chemical systems and transformations, and in the	 Essential knowledge 1.E.1: Physical and chemical processes can be depicted symbolically; when this is done, the illustration must conserve all atoms of all types. A. Various types of representations can be used to show that matter is conserved during chemical and physical processes. a. Symbolic representations b. Particulate drawings B. Because atoms must be conserved during a chemical process, it is possible to calculate product masses given known reactant masses, or to calculate reactant masses given product masses. C. The concept of conservation of atoms plays an important role in the interpretation 	Learning Objective for EK 1.E.1: LO 1.17 The student is able to express the law of conservation of mass quantitatively and qualitatively using symbolic representations and particulate drawings.	Teacher prepared, Tro. A Molecular Approach, 3 rd Edition, textbook chapter 4	Teacher prepared	See Year-at- a-glance			

		Curriculum Guide		
conceptualization	and analysis of many			
and	chemical processes on			
representation of	the macroscopic scale.			
those systems	Conservation of atoms			
and	should be related to			
transformations.	how nonradioactive			
	atoms are neither lost			
	nor gained as they			
	cycle among land,			
	water, atmosphere,			
	and living organisms.			
	Essential knowledge 1.E.2: Conservation of atoms makes it possible to compute the masses of substances involved in physical and chemical processes. Chemical processes result in the formation of new substances, and the amount of these depends on the number and the types and masses of elements in the reactants, as well as the efficiency of the transformation.	Learning Objectives for EK 1.E.2: LO 1.18 The student is able to apply conservation of atoms to the rearrangement of atoms in various processes. LO 1.19 The student can design, and/or interpret data from, an experiment that uses gravimetric analysis to determine the concentration of an analyte	Teacher prepared, Tro. <i>A Molecular</i> <i>Approach, 3rd Edition,</i> textbook chapter 4	
	 A. The number of atoms, molecules, or formula units in a given mass of substance can be calculated. B. The subscripts in a chemical formula represent the number 	in a solution. LO 1.20 The student can design, and/or interpret data from, an experiment that uses titration to determine the concentration of an analyte	Teacher prepared, Tro. <i>A Molecular</i> <i>Approach, 3rd Edition,</i> textbook chapters 4, 15 and 16	

		Curriculum Guide		
of at	toms of each type	in a solution.		
in a	molecule.			
C. The	coefficients in a			
bala	nced chemical			
equa	ation represent the			
relat	tive numbers of			
part	icles that are			
cons	sumed and created			
whe	n the process			
OCCL	irs.			
D. The	concept of			
cons	servation of atoms			
play	s an important role			
in th	e interpretation			
and	analysis of many			
cher	nical processes on			
the	macroscopic scale.			
E. In gr	avimetric analysis,			
a su	bstance is added to			
a so	lution that reacts			
spec	cifically with a			
disso	olved analyte (the			
cher	nical species that is			
the	target of the			
anal	ysis) to form a			
	l. The mass of solid			
form	ned can be used to			
infe	r the concentration			
of th	ne analyte in the			
initia	al sample.			
	ations may be used			
to d	etermine the			
conc	centration of an			

Curriculum Guide								
analyte in a solution.								
The titrant has a								
known concentration								
of a species that reacts								
specifically with the								
analyte. The								
equivalence of the								
titration occurs when								
the analyte is totally								
consumed by the								
reacting species in the								
titrant. The								
equivalence point is								
often indicated by a								
change in a property								
(such as color) that								
occurs when the								
equivalence point is								
reached. This								
observable event is								
called the end point of								
the titration.								

Curriculum Guide								
General Topic	AP Standards	Learning Objective, Skills & Vocabulary	Resources & Activities	Assessments	Suggested Time (In Days)			
Big Idea 2: Chemical and physical properties of materials can be explained by the structure and the arrangement of atoms, ions, or molecules and the forces between them. Transformations of matter can be observed in multiple ways that are generally categorized as either chemical or physical change. These categories can generally be distinguished	Essential knowledge 2.A.1: The different properties of solids and liquids can be explained by differences in their structures, both at the particulate level and in their supramolecular structures. A. Solids can be crystalline, where the particles are arranged in a regular 3-D structure, or they can be amorphous, where the particles do not have a regular, orderly arrangement. In both cases, the motion of the individual particles is limited, and the particles do not undergo any overall translation with respect to each other. Interparticle interactions and the	Learning Objectives for Big Idea 2: LO 2.1 Students can predict properties of substances based on their chemical formulas, and provide explanations of their properties based on particle views. LO 2.2 The student is able to explain the relative strengths of acids and bases based on molecular structure, interparticle forces, and solution equilibrium. Note: These learning objectives apply to Essential knowledge components of 2A–2D. Learning Objective for EK 2.A.1:	Teacher prepared, Tro. A Molecular Approach, 3 rd Edition, textbook chapters 9 and 10 Teacher prepared, Tro. A Molecular Approach, 3 rd Edition, textbook chapters 9, 10, 15, and 16	Teacher prepared	See Year-at- a-glance			
through consideration of the electrostatic (Coulombic) forces that are associated with a	ability to pack the particles together provide the main criteria for the structures of solids. B. The constituent	LO 2.3 The student is able to use aspects of particulate models (i.e., particle spacing, motion, and forces of attraction) to reason about observed differences	Teacher prepared, Tro. <i>A Molecular</i> <i>Approach, 3rd Edition,</i> textbook chapters 9 and 10					

AP Chemistry

		Curriculum Guide		
given change at	particles in liquids are	between solid and liquid		
the particulate	very close to each	phases and among solid and		
level. The	other, and they are	liquid materials.		
strength of such	continually moving and			
forces falls along	colliding. The particles	Vocabulary for Big Idea 2:		
a continuum,	are able to undergo			
with the	translation with respect	covalent bonds		
strongest forces	to each other and their	dalton's law		
generally being	arrangement, and	density of a gas		
chemical bonds.	movement is	dipole		
Chemical	influenced by the	dipole-dipole forces		
changes involve	nature and strength of	dissociation		
the making and	the intermolecular	doping		
breaking of	forces that are present.	expanded octets		
chemical bonds.	C. The solid and liquid	formal charge		
For physical	phases for a particular	•		
changes, the	substance generally	hybrid orbitals		
forces being	have relatively small	hydrogen bonds		
overcome are	differences in molar	ideal gas equation		
weaker	volume because in both	intermolecular forces		
intermolecular	cases the constituent	interstitial alloy		
interactions,	particles are very close	ionic bonds		
which are also	to each other at all	lattice energy		
Coulombic in	times.	lewis dot structure		
nature. The	D. The differences in other	linear shape		
shapes of the	properties, such as	london dispersion forces		
particles involved, and the	viscosity, surface tension, and volumes of	molarity		
space between	mixing (for liquids), and	molecular geometry		
them, are key	hardness and	mole fraction		
factors in	macroscopic crystal	n-doping		
determining the	structure (for solids),	network (covalent) bonds		
nature of these	can be explained by	octahedral		

		Curriculum Guide		
physical changes. Using only these general concepts of varying strengths of chemical bonds and weaker intermolecular interactions, many properties of a wide range of chemical systems can be understood.	 differences in the strength of attraction between the particles and/or their overall organization. E. Heating and cooling curves for pure substances provide insight into the energetics of liquid/solid phase changes. 	partial pressure p-doping pi bond π polar solvents resonance sigma bond σ substitutional alloy tetrahedral trigonal bipyramidal trigonal planar valence electrons VSEPR valence shell electron- pair repulsion		
Enduring understanding 2.A: Matter can be described by its physical properties. The physical properties of a substance generally depend on the spacing between the particles (atoms, molecules, ions) that make up the substance and the forces of attraction among	Essential knowledge 2.A.2: The gaseous state can be effectively modeled with a mathematical equation relating various macroscopic properties. A gas has neither a definite volume nor a definite shape; because the effects of attractive forces are minimal, we usually assume that the particles move independently. A. Ideal gases exhibit specific mathematical relationships among the number of particles present, the temperature, the pressure, and the	Learning Objectives for EK 2.A.2: LO 2.4 The student is able to use KMT and concepts of intermolecular forces to make predictions about the macroscopic properties of gases, including both ideal and non-ideal behaviors. LO 2.5 The student is able to refine multiple representations of a sample of matter in the gas phase to accurately represent the effect of changes in macroscopic properties on	Teacher prepared, Tro. <i>A Molecular</i> <i>Approach, 3rd Edition,</i> textbook chapter 5	

them.volume.the sample.There is a relationship between the macroscopicIn a mixture of ideal gases, the pressure exerted by each component (the partial ropersure) is independent of the other components.LO 2.6 The student can apply mathematical orelationships or estimation to determine macroscopicproperties of solids, liquids, and gases, and the constituentindependent of the other components.LO 2.6 The student can apply mathematical orelationships or estimation to determine macroscopicIn a mixture of variables for ideal gases.properties of the constituentother components. other components.In a mixture of the other components.In a mixture of other components.properties of those atomic scale. The properties of and gases also and gases also representations of the relationships between arrangement of arrangement of probust model for qualitative explanations of these mathematical relationships between relationships between arrangement of arrangement of arrangement of probust model for qualitative explanations of these mathematical relationships.Kinetic molecular theory combined with a qualitative explanations of these mathematical relationships.For molecular theory conditions between them.E.Some real gases exhibit ideal or near-ideal behavior under typical laboratory conditions. Laboratory conditions. Laboratory conditions.For gases, behavior under typical laboratory conditions. Laboratory conditions. Laboratory conditions.For gases, behavior under typical laboratory conditions. Laboratory conditions.For gases, behavior under typical<			Curriculum Guide		
There is a gases, the pressure LO 2.6 The student can relationship exerted by each apply mathematical macroscopic component (the partial) relationships or estimation properties of independent of the and gases, and Therefore, the total particles of those C. Graphical represented by each represented by cach pressure is the sum of the constituent the partial pressures. particles of those C. Graphical representations of the representations of the representations of the relationships between proy combined with a and gase also D. Kinetic molecular theory combined with a qualitative use of the qualitative use of the arrangement of robust model for particles in those qualitative explanations states, their of these mathematical relationships. ethesin arrangement of or tobust model for particles in those qualitative explanations states, their of these mathematical <	them.		the sample.		
relationships can relationships in 2.A.2.a	relationship between the macroscopic properties of solids, liquids, and gases, and the structure of the constituent particles of those materials on the molecular and atomic scale. The properties of solids, liquids, and gases also reflect the relative orderliness of the arrangement of particles in those states, their relative freedom of motion, and the nature and strength of the interactions between them. For gases, volumetric relationships can	 gases, the pressure exerted by each component (the partial pressure) is independent of the other components. Therefore, the total pressure is the sum of the partial pressures. C. Graphical representations of the relationships between P, V, and T are useful to describe gas behavior. D. Kinetic molecular theory combined with a qualitative use of the Maxwell Boltzmann distribution provides a robust model for qualitative explanations of these mathematical relationships. E. Some real gases exhibit ideal or near-ideal behavior under typical laboratory conditions. Laboratory data can be used to generate or investigate the 	apply mathematical relationships or estimation to determine macroscopic		

			Curriculum Guide		
describe ideal		and to estimate			
behavior, and a		absolute zero on the			
conceptual		Celsius scale.			
understanding of	F.	All real gases are			
that behavior can		observed to deviate			
be constructed		from ideal behavior,			
based on the		particularly under			
atomic model		conditions that are			
and a relatively		close to those resulting			
simple kinetic		in condensation. Except			
molecular theory		at extremely high			
(KMT).		pressures that are not			
Solutions are an		typically seen in the			
important class		laboratory, deviations			
of mixtures; of		from ideal behavior are			
particular		the result of			
importance is a		intermolecular			
conceptual		attractions among gas			
understanding on		molecules. These forces			
the molecular		are strongly distance-			
level of the		dependent, so they are			
structure and		most significant during			
composition of a		collisions.			
liquid solution. In	G.	Observed deviations			
addition, the		from ideal gas behavior			
energetics of		can be explained			
solution		through an			
formation can be		understanding of the			
understood		structure of atoms and molecules and their			
qualitatively		intermolecular			
through		intermolecular interactions.			
consideration of	V V DI				
the interactions	V V PI	hase diagrams are			

		Curriculum Guide		
and structure of	beyond the scope of this course			
the components	and the AP Exam.			
before and after the creation of the solution.	Rationale: Phase diagrams are standard in all high school chemistry textbooks and therefore are considered prior knowledge.			
	Essential knowledge 2.A.3:			
	solutions are homogeneous			
	mixtures in which the physical			
	properties are dependent on	Learning Objectives for EK	Teacher prepared,	
	the concentration of the solute	2.A.3:	Tro. A Molecular	
	and the strengths of all	LO 2.7 The student is able to	Approach, 3 rd Edition, textbook chapters 11	
	interactions among the particles of the solutes and	explain how solutes can be	and 12	
	solvent.	separated by		
		chromatography based on		
	A. In a solution	intermolecular interactions.		
	(homogeneous	LO 2.8 The student can draw	Teacher prepared,	
	mixture), the	and/or interpret	Tro. A Molecular	
	macroscopic properties do not vary throughout	representations of solutions	Approach, 3 rd Edition,	
	the sample. This is in	that show the interactions	textbook chapter 4	
	contrast to a	between the solute and		
	heterogeneous mixture	solvent.		
	in which the	LO 2.9 The student is able to	Teacher prepared,	
	macroscopic properties	create or interpret	Tro. A Molecular	
	depend upon the	representations that link the	Approach, 3 rd Edition,	
	location in the mixture.	concept of molarity with	textbook chapters 11	
	The distinction	particle views of solutions.	and 12	
	between	LO 2.10 The student can		
	heterogeneous and	design and/or interpret the		
	homogeneous depends		۱	

	Curriculum Guide		
on the length scale of	results of a separation		
interest. As an	experiment (filtration, paper		
example, colloids may	chromatography, column		
be heterogeneous on	chromatography, or		
the scale of	distillation) in terms of the		
micrometers, but	relative strength of		
homogeneous on the	interactions among and		
scale of centimeters.	between the components.		
B. Solutions come in the			
form of solids, liquids,			
and gases.			
C. For liquid solutions, the			
solute may be a gas, a			
liquid, or a solid.			
D. Based on the			
reflections of their			
structure on the			
microscopic scale,			
liquid solutions exhibit			
several general			
properties:			
a. The			
components			
cannot be			
separated by			
using filter			
paper.			
b. There are no			
components			
large enough to			
scatter visible			
light.			
c. The			

 		Curriculuin Guide		
	components			
	can be			
	separated			
	using processes			
	that are a			
	result of the			
	intermolecular			
	interactions			
	between and			
	among the			
	components			
Ε.	Chromatography			
	(paper and column)			
	separates chemical			
	species by taking			
	advantage of the			
	differential strength of			
	intermolecular			
	interactions between			
	and among the			
	components.			
F.	Distillation is used to			
	separate chemical			
	species by taking			
	advantage of the			
	differential strength of			
	intermolecular			
	interactions between			
	and among the			
	components and the			
	effects these			
	interactions have on			
	the vapor pressures of			

		Curriculum Guide		
	the components in the			
	mixture.			
G.	The formation of a			
	solution may be an			
	exothermic or			
	endothermic process,			
	depending on the			
	relative strengths of			
	intermolecular/interpar			
	ticle interactions			
	before and after the			
	dissolution process.			
H.	Generally, when ionic			
	compounds are			
	dissolved in water, the			
	component ions are			
	separated and			
	dispersed. The			
	presence of ions in a			
	solution can be			
	detected by use of			
	conductivity			
	measurements.			
l.	Solution composition			
	can be expressed in a			
	variety of ways;			
	molarity is the most			
	common method used			
	in the laboratory.			
	Molarity is defined as			
	the number of moles of			
	solute per liter of			
	solution.			

	Curriculum Guide		
J. Understanding how to			
prepare solutions of			
specified molarity			
through direct mixing			
of the components,			
through use of			
volumetric glassware,			
and by dilution of a			
solution of known			
molarity with			
additional solvent is			
important for			
performing laboratory			
work in chemistry.			
XX Colligative properties are			
beyond the scope of this course			
and the AP Exam and are			
therefore considered prior			
knowledge and not directly			
assessed on the exam.			
$\mathbf{X} \mathbf{X}$ Calculations of molality,			
percent by mass, and percent			
by volume are beyond the			
scope of this course and the AP			
Exam.			
Rationale: Molality pertains to			
colligative properties, which			
are considered prior knowledge			
and therefore molality will not			
be assessed on the exam.			

Cur	ricu	lum	Gui	ide

General Topic	AP Standards	Learning Objective, Skills & Vocabulary	Resources & Activities	Assessments	Suggested Time (In Days)
Enduring understanding 2.B: Forces of attraction between particles (including the noble gases and also different parts of some large molecules) are important in determining many macroscopic properties of a substance, including how the observable physical state changes with temperature. Chemists categorize intermolecular interactions based on the structural features giving rise to the	 Essential knowledge 2.B.1: London dispersion forces are attractive forces present between all atoms and molecules. London dispersion forces are often the strongest net intermolecular force between large molecules. A. A temporary, instantaneous dipole may be created by an uneven distribution of electrons around the nucleus (nuclei) of an atom (molecule). B. London dispersion forces arise due to the Coulombic interaction of the temporary dipole with the electron distribution in neighboring atoms and molecules. C. Dispersion forces increase with contact area between molecules and with increasing polarizability of the molecules. The polarizability of a 	Learning Objective for EK 2.B.1: LO 2.11 The student is able to explain the trends in properties and/or predict properties of samples consisting of particles with no permanent dipole on the basis of London dispersion forces.	Teacher prepared, Tro. A Molecular Approach, 3 rd Edition, textbook chapters 11 and 12	Teacher prepared tests, quizzes, etc. Series available assessments online. (Optional)	See Year-at- a-glance

AP Chemistry

		Curriculum Guide		
interaction.	molecule increases			
Although there	with the number of			
are some trends	electrons in the			
in the relative	molecule, and is			
strengths of	enhanced by the			
these	presence of pi bonding.			
interactions, the		Learning Objectives for EK		
specific structure	Essential knowledge 2.B.2:	2.B.2:		
and size of the	Dipole forces result from the	2.0.2.		
particles involved	attraction among the positive	LO 2.12 The student can	Teacher prepared,	
can play a very	ends and negative ends of	qualitatively analyze data	Tro. A Molecular	
important role in	polar molecules. hydrogen	regarding real gases to	Approach, 3 rd Edition,	
determining the	bonding is a strong type of	identify deviations from	textbook chapter 5	
overall strength	dipole-dipole force that exists	ideal behavior and relate		
of a particular	when very electronegative	these to molecular		
intermolecular	atoms (N, O, and F) are	interactions.		
(or	involved.	LO 2.13 The student is able	Teesherman	
intramolecular)	A. Molecules with dipole	to describe the relationships	Teacher prepared, Tro. <i>A Molecular</i>	
interaction. The	moments experience	between the structural	Approach, 3 rd Edition,	
properties of	Coulombic interactions	features of polar molecules	textbook chapters 11	
condensed	that result in a net	and the forces of attraction	and 12	
phases and of	attractive interaction	between the particles.		
many crucial	when they are near			
biological	each other.	LO 2.14 The student is able	Teacher prepared,	
structures are	a. Intermolecular	to apply Coulomb's law	Tro. A Molecular	
determined by	dipole-dipole	qualitatively (including using	Approach, 3 rd Edition,	
the nature and	forces are	representations) to describe the interactions of ions, and	textbook chapters 9 and 10	
strength of these	weaker than	the attractions between ions		
interactions.	ionic forces or	and solvents to explain the		
Deviation from	covalent	factors that contribute to		
ideal gas	bonds.	the solubility of ionic		
behavior is	b. Interactions	compounds.		
generally a	between polar			

		Curriculuiti Guide		
reflection of the	molecules are			
presence of	typically			
intermolecular	greater than			
interactions	between			
between gas	nonpolar			
particles. Thus, in	molecules of			
all phases, the	comparable			
structure of	size because			
particles on the	these			
molecular level is	interactions act			
directly related	in addition to			
to the properties	London			
of both the	dispersion			
particles	forces.			
themselves and	c. Dipole-dipole			
the behavior of	attractions can			
macroscopic	be represented			
collections of	by diagrams of			
those molecules.	attraction			
	between the			
	positive and			
	negative ends			
	of polar			
	molecules			
	trying to			
	maximize			
	attractions and			
	minimize			
	repulsions in			
	the liquid or			
	solid state.			
	d. Dipole-induced			
	dipole			
L		1		I]

Curriculum Guide

 Cum	culum Guide	
interactions are		
present		
between a		
polar and		
nonpolar		
molecule. The		
strength of		
these forces		
increases with		
the magnitude		
of the dipole of		
the polar		
molecule and		
with the		
polarizability of		
the nonpolar		
molecule.		
B. Hydrogen bonding is a		
relatively strong type of		
intermolecular		
interaction that exists		
when hydrogen atoms		
that are covalently		
bonded to the highly		
electronegative atoms		
(N, O, and F) are also		
attracted to the		
negative end of a		
dipole formed by the		
electronegative atom		
(N, O, and F) in a		
different molecule, or a		

AP Chemistry

 Curriculum Guide	
different part of the	
same molecule. When	
hydrogen bonding is	
present, even small	
molecules may have	
strong intermolecular	
attractions.	
XX Other cases of much	
weaker hydrogen bonding are	
beyond the scope of the AP	
Chemistry course and exam.	
Rationale: The hydrogen	
bonding that occurs when	
hydrogen is bonded to highly	
electronegative atoms (N, O,	
and F) will be emphasized as	
will the electrostatic versus	
covalent nature of the bond.	
We will not include other cases	
of much weaker hydrogen	
bonding in the AP Chemistry	
course.	
C. Hydrogen bonding	
between molecules, or	
between different	
parts of a single	
molecule, may be	
represented by	
diagrams of molecules	
with hydrogen bonding	
and indications of	
location of hydrogen	
bonding.	
	_

D. tonic interactions with dipoles are important in the solubility of ionic compounds in polar solvents.Learning Objectives for EK 2.B.3: 2.B.3: 2.B.3: 1. D 2.15 The student is able to explain observations regarding the solubility of ionic solids and molecules in the basis of particle views that include intermolecular forces present.Learning Objectives for EK 2.B.3: The student is able to explain observations regarding the solubility of ionic solids and molecules in the basis of particle views that include intermolecular interactions and entropic effects.Teacher prepared, Tro. A Molecular Approach, 3 rd Edition, textbook chapter 9, 10, 13, and 12A. Many properties of liquids and solids are determined by the strengths and types of intermolecular interactions, action, Vapor present.D. 2.16 The student is able to explain observations regarding the properties (phase, vapor pressure, viscosity, etc.) of small and large molecular intermolecular intermolecular intermolecular interactions tend to be miscible or soluble in one another.Teacher prepared, Tro. A Molecular Approach, 3 rd Edition, textbook chapter 9, 10, 13, and 12B. Substances with similar interactions tend to be miscible or soluble in one another.To c. A molecular (Edition, textbook chapters 11 and 12C. The presence of intermolecular forces among gaseous particles, including noble gase, leads toTeacher prepared, Tro. A Molecular (Edition, textbook chapters 11 and 12

	Currentian Guide
	deviations from ideal
	behavior, and it can
	lead to condensation at
	sufficiently low
	temperatures and/or
	sufficiently high
	pressures.
C	D. Graphs of the pressure-
	volume relationship for
	real gases can
	demonstrate the
	deviation from ideal
	behavior; these
	deviations can be
	interpreted in terms of
	the presence and
	strengths of
	intermolecular forces.
E	E. The structure and
	function of many
	biological systems
	depend on the strength
	and nature of the
	various Coulombic
	forces.
	a. Substrate
	interactions
	with the active
	sites in enzyme
	catalysis
	b. Hydrophilic and
	hydrophobic
	regions in

	Curriculum Guide		
proteins that			
determine			
three-			
dimensional			
structure in			
water solutions			

		Curriculum Guide			
General Topic	AP Standards	Learning Objective, Skills & Vocabulary	Resources & Activities	Assessments	Suggested Time (In Days)
Enduring understanding 2.C: The strong electrostatic forces of attraction holding atoms together in a unit are called chemical bonds. Covalent bonds, ionic bonds, and metallic bonds are distinct from (and significantly stronger than) typical intermolecular interactions. Electronegativity can be used to reason about the type of bonding present between two atoms. Covalent chemical bonds can be modeled as the sharing of	 Essential knowledge 2.C.1: in covalent bonding, electrons are shared between the nuclei of two atoms to form a molecule or polyatomic ion. electronegativity differences between the two atoms account for the distribution of the shared electrons and the polarity of the bond. A. Electronegativity is the ability of an atom in a molecule to attract shared electrons to it. B. Electronegativity values for the representative elements increase going from left to right across a period and decrease going down a group. These trends can be understood qualitatively through the electronic structure of the atoms, the shell model, and Coulomb's law. C. Two or more valence electrons shared between atoms of identical 	Learning Objective for EU 2.C: LO 2.17 The student can predict the type of bonding present between two atoms in a binary compound based on position in the periodic table and the electronegativity of the elements. Learning Objective for EK 2.C.1: LO 2.18 The student is able to rank and justify the ranking of bond polarity on the basis of the locations of the bonded atoms in the periodic table.	Teacher prepared, Tro. <i>A Molecular</i> <i>Approach, 3rd Edition,</i> textbook chapters 9 and 10	Teacher prepared	See Year-at- a-glance

		Curriculum Guide		
one or more	electronegativity			
pairs of valence	constitute a nonpolar			
electrons	covalent bond.			
between two	D. However, bonds			
atoms in a	between carbon and			
molecule. The	hydrogen are often			
extent to which	considered to be			
this sharing is	nonpolar even though			
unequal can be	carbon is slightly more			
predicted from	electronegative than			
the relative	hydrogen. The			
electronegativities	formation of a			
of the atoms	nonpolar covalent			
involved; the	bond can be			
relative	represented graphically			
electronegativities	as a plot of potential			
can generally be	energy vs. distance for			
understood	the interaction of two			
through	identical atoms.			
application of the	Hydrogen atoms are			
shell model and	often used as an			
Coulomb's law.	example.			
The Lewis	a. The relative			
structure model,	strengths of			
combined with	attractive and			
valence shell	repulsive			
electron pair	forces as a			
repulsion	function of			
(VSEPR), can be	distance			
used to predict	determine the			
many structural	shape of the			
features of	graph.			
covalently	b. The bond			
		1		

		Curriculum Guide		
bonded	length is the			
molecules and	distance			
ions. Ionic	between the			
bonding is the	bonded atoms'			
phrase used to	nuclei, and is			
describe the	the distance of			
strong Coulombic	minimum			
interaction	potential			
between ions in	energy where			
an ionic	the attractive			
substance. The	and repulsive			
bonding in	forces are			
metals is	balanced.			
characterized by	c. The bond			
delocalization of	energy is the			
valence	energy			
electrons.	required for			
	the dissociation			
	of the bond.			
	This is the net			
	energy of			
	stabilization of			
	the bond			
	compared to			
	the two			
	separated			
	atoms.			
	Typically, bond			
	energy is given			
	on a per mole			
	basis.			
	E. Two or more valence			
	electrons shared			

	Curriculum Guide		
between atoms of			
unequal			
electronegativity			
constitute a polar			
covalent bond.			
a. The difference			
in			
electronegativit			
y for the two			
atoms involved			
in a polar			
covalent bond			
is not equal to			
zero.			
b. The atom with			
a higher			
electronegativit			
y will develop a			
partial negative			
charge relative			
to the other			
atom in the			
bond. For			
diatomic			
molecules, the			
partial negative			
charge on the			
more			
electronegative			
atom is equal			
in magnitude			
to the partial			
positive charge			
	·		

		Curriculum Guide		
	on the less			
	electronegative			
	atom.			
	c. Greater			
	differences in			
	electronegativit			
	y lead to			
	greater partial			
	charges, and			
	consequently			
	greater bond			
	dipoles.			
	d. The sum of			
	partial charges			
	in any molecule			
	or ion must be			
	equal to the			
	overall charge			
	on the species.			
F.	All bonds have some			
	ionic character, and the			
	difference between			
	ionic and covalent			
	bonding is not distinct			
	but rather a			
	continuum. The			
	difference in			
	electronegativity is not			
	the only factor in			
	determining if a bond is			
	designated ionic or			
	covalent. Generally,			
	bonds between a metal			

and nor are Exa pro cor wa	nd nonmetal are ionic, nd between two onmetals the bonds re covalent. xamination of the roperties of a ompound is the best vay to determine the ype of bonding.	Learning Objective for EK 2.C.2: LO 2.19 The student can		
pro cor wa	roperties of a ompound is the best vay to determine the	2.C.2:		
		create visual		
Ionic bondi net attracti oppositely packed tog lattice. A. The in a arr sys D a the am ani mir rep X X Knowle types of cry beyond the and the AP	knowledge 2.C.2: ding results from the stion between y charged ions, closely ogether in a crystal he cations and anions n an ionic crystal are rranged in a ystematic, periodic 3- array that maximizes he attractive forces mong cations and nions while hinimizing the epulsive forces. vledge of specific crystal structures is he scope of this course P Exam. Rationale: of crystal structures	representations of ionic substances that connect the microscopic structure to macroscopic properties, and/or use representations to connect the microscopic structure to macroscopic properties (e.g., boiling point, solubility, hardness, brittleness, low volatility, lack of malleability, ductility, or conductivity).		

	Curriculum Guide			
understanding of the big ideas.				
B. Coulomb's law				
describes the force of				
attraction between the				
cations and anions in				
an ionic crystal.				
a. Because the				
force is				
proportional to				
the charge on				
each ion, larger				
charges lead to				
stronger				
interactions.				
b. Because the				
force is				
inversely				
proportional to				
the square of				
the distance				
between the				
centers of the				
ions (nuclei),				
smaller ions				
lead to				
stronger interactions.				
Essential knowledge 2.C.3:	Learning Objective for EK			
metallic bonding describes an	2.C.3:			
array of positively charged	LO 2.20 The student is able			
metal cores surrounded by a	to explain how a bonding			
sea of mobile valence	model involving delocalized			
	electrons is consistent with			
	·	•	•	

		Curriculum Guide		
electro	ns.	macroscopic properties of		
•	The valence electrons	metals (e.g., conductivity,		
A.	from the metal atoms	malleability, ductility, and		
	are considered to be	low volatility) and the shell		
	delocalized and not	model of the atom.		
	associated with any			
	individual atom.			
В	Metallic bonding can			
	be represented as an			
	array of positive metal			
	ions with valence			
	electrons drawn among			
	them, as if the			
	electrons were moving			
	(i.e., a sea of			
	electrons).			
C.	The electron sea model			
	can be used to explain			
	several properties of			
	metals, including			
	electrical conductivity,			
	malleability, ductility,			
	and low volatility.			
D.	The number of valence			
	electrons involved in			
	metallic bonding, via			
	the shell model, can be			
	used to understand			
	patterns in these			
	properties, and can be			
	related to the shell			
	model to reinforce the			
	connections between			

	Curriculum Guide	 	
metallic bonding and			
other forms of			
bonding.			
	Learning Objective for EK		
Essential knowledge 2.C.4:	2.C.4:		
The localized electron bonding	LO 2 24 The student is ship		
model describes and predicts	LO 2.21 The student is able		
molecular geometry using Lewis	to use Lewis diagrams and		
diagrams and the VSEPR model.	VSEPR to predict the		
A. Lewis diagrams can be	geometry of molecules,		
constructed according	identify hybridization, and		
to a well-established	make predictions about		
set of principles.	polarity.		
B. The VSEPR model uses			
the Coulombic			
repulsion between			
electrons as a basis for			
predicting the			
arrangement of			
electron pairs around a			
central atom.			
C. In cases where more			
than one equivalent			
Lewis structure can be			
constructed, resonance			
must be included as a			
refinement to the			
Lewis structure			
approach in order to			
provide qualitatively			
accurate predictions of			
molecular structure			
and properties (in			

	Curriculum Guide		
some cases).			
D. Formal charge can be			
used as a criterion for			
determining which of			
several possible valid			
Lewis diagrams			
provides the best			
model for predicting			
molecular structure			
and properties.			
XX The use of formal charge			
to explain why certain			
molecules do not obey the			
octet rule is beyond the scope			
of this course and the AP Exam.			
Rationale: Explaining why			
certain molecules do NOT obey			
the octet rule is beyond the			
scope of the course. The scope			
of the course DOES include the			
use of formal charge to			
evaluate different structures			
that follow the octet rule and			
the limitations of using Lewis			
structures for molecules with			
odd numbers of electrons or			
expanded octets.			
E. The combination of			
Lewis diagrams with			
the VSEPR model			
provides a powerful			
model for predicting			
1 0			

		Curriculuiti Gulue		
	structural properties of			
	many covalently			
	bonded molecules and			
	polyatomic ions,			
	including the following:			
	a. Molecular			
	geometry			
	b. Bond angles			
	c. Relative bond			
	energies based			
	on bond order			
	d. Relative bond			
	lengths			
	(multiple			
	bonds, effects			
	of atomic			
	radius)			
	e. Presence of a			
	dipole moment			
	F. As with any model,			
	there are limitations to			
	the use of the Lewis			
	structure model,			
	particularly in cases			
	with an odd number of			
	valence electrons.			
	Recognizing that Lewis			
	diagrams have			
	limitations is of			
	significance.			
	XX Learning how to defend			
	Lewis models based on			
	assumptions about the			
μ	I		1	

Curriculum Guide		
limitations of the models is		
beyond the scope of this course		
and the AP Exam.		
Rationale: Learning how to		
defend Lewis models does not		
strengthen understanding of		
the big ideas.		
G. Organic chemists		
commonly use the		
terms "hybridization"		
and "hybrid orbital" to		
describe the		
arrangement of		
electrons around a central atom. When		
there is a bond angle of		
180°, the central atom		
is said to be sp hybridized; for 120°,		
the central atom is sp^2		
hybridized; and for		
109°, the central atom		
is sp ³ hybridized.		
Students should be		
aware of this		
terminology, and be		
able to use it. When an		
atom has more than		
four pairs of electrons		
surrounding the central		
atom, students are only		
responsible for the		

	Curriculum Guide		
shape of the resulting			
molecule.			
XX An understanding of the			
derivation and depiction of			
these orbitals is beyond the			
scope of this course and the AP			
Exam. Current evidence			
suggests that hybridization			
involving d orbitals does not			
exist, and there is controversy			
about the need to teach any			
hybridization. Until there is			
agreement in the chemistry			
community, we will continue to			
include sp, sp ² , and sp ³			
hybridization in the current			
course.			
Rationale: The course includes			
the distinction between sigma			
and pi bonding, the use of			
VSEPR to explain the shapes of			
molecules, and the sp, sp ² , and			
sp ³ nomenclature. Additional			
aspects related to hybridization			
are both controversial and do			
not substantially enhance			
understanding of molecular			
structure.			
H. Bond formation is			
associated with overlap			
between atomic			
orbitals. In multiple			

	Curriculum Guide		
bonds, such overlap			
leads to the formation			
of both sigma and pi			
bonds. The overlap is			
stronger in sigma than			
pi bonds, which is			
reflected in sigma			
bonds having larger			
bond energy than pi			
bonds. The presence of			
a pi bond also prevents			
the rotation of the			
bond, and leads to			
structural isomers. In			
systems, such as			
benzene, where atomic			
p-orbitals overlap			
strongly with more			
than one other p-			
orbital, extended pi			
bonding exists, which is			
delocalized across			
more than two nuclei.			
Such descriptions			
provide an alternative			
description to			
resonance in Lewis			
structures. A useful			
example of delocalized			
pi bonding is molecular			
solids that conduct			
electricity. The			
discovery of such			

	Curriculum Guide		
materials at the end of			
the 1970s overturned a			
long-standing			
assumption in			
chemistry that			
molecular solids will			
always be insulators.			
I. Molecular orbital			
theory describes			
covalent bonding in a			
manner that can			
capture a wider array			
of systems and			
phenomena than the			
Lewis or VSEPR models.			
Molecular orbital			
diagrams, showing the			
correlation between			
atomic and molecular			
orbitals, are a useful			
qualitative tool related			
to molecular orbital			
theory.			
XX Other aspects of molecular			
orbital theory, such as recall or			
filling of molecular orbital			
diagrams, are beyond the			
scope of this course and the AP			
Exam.			
Rationale: As currently covered			
in freshman college chemistry			
textbooks, molecular orbital			

	Curriculum Guide		
theory is superficially taught			
and limited to homonuclear			
molecules in the second period.			
Algorithmic filling of such MO			
diagrams does not lead to a			
deeper conceptual			
understanding of bonding. The			
course does include the			
important distinction between			
sigma and pi bonding.			

		Curriculum Guide			
General Topic	AP Standards	Learning Objective, Skills & Vocabulary	Resources & Activities	Assessments	Suggested Time (In Days)
Enduring understanding 2.D: The type of bonding in the solid state can be deduced from the properties of the solid state. In solids, the properties of the material reflect the nature and strength of the interactions between the constituent particles. For this reason, the type of bonding that predominates in a solid material, and the nature of the interactions between the particles comprising the solid, can generally be inferred from the observed	Essential knowledge 2.D.1: Ionic solids have high melting points, are brittle, and conduct electricity only when molten or in solution. A. Many properties of ionic solids are related to their structure. a. Ionic solids generally have low vapor pressure due to the strong Coulombic interactions of positive and negative ions arranged in a regular three- dimensional array. b. Ionic solids tend to be brittle due to the repulsion of like charges caused when one layer slides across another layer.	Learning Objective for EU 2.D: LO 2.22 The student is able to design or evaluate a plan to collect and/or interpret data needed to deduce the type of bonding in a sample of a solid. Learning Objectives for EK 2.D.1: LO 2.23 The student can create a representation of an ionic solid that shows Essential characteristics of the structure and interactions present in the substance. LO 2.24 The student is able to explain a representation that connects properties of an ionic solid to its structural attributes and to the interactions present at the atomic level.	Teacher prepared, Tro. A Molecular Approach, 3 rd Edition, textbook chapters 9 and 10 Teacher prepared, Tro. A Molecular Approach, 3 rd Edition, textbook chapters 9 and 10	Teacher prepared	See Year-at- a-glance

AP Chemistry

Curriculum Guide

			Curriculum Guide	 	
macroscopic	С.	Ionic solids do			
properties of the		not conduct			
material.		electricity.			
Properties such		However, when			
as vapor		ionic solids are			
pressure,		melted, they			
conductivity as a		do conduct			
solid and in		electricity			
aqueous		because the			
solution, and		ions are free to			
relative		move.			
brittleness or	d.	When ionic			
hardness can		solids are			
generally be		dissolved in			
explained in this		water, the			
way.		separated ions			
Although		are free to			
recognizing the		move;			
properties that		therefore,			
can be associated		these solutions			
with a particular		will conduct			
type of bonding		electricity.			
is valuable in		Dissolving a			
categorizing		non-conducting			
materials,		solid in water,			
relating those		and observing			
properties to the		the solution's			
structure of the		ability to			
materials on the		conduct			
molecular scale,		electricity, is			
and being able to		one way to			
make reasoned		identify an			
predictions of the		ionic solid.			

AP Chemistry

		Curriculuin Guide		
properties of a	e. Ionic			
solid based on its	compounds			
constituent	tend not to			
particles,	dissolve in			
provides	nonpolar			
evidence of	solvents			
deeper	because the			
conceptual	attractions			
understanding.	among the ions			
	are much			
	stronger than			
	the attractions			
	among the			
	separated ions			
	and the			
	nonpolar			
	solvent			
	molecules.			
	B. The attractive force			
	between any two ions			
	is governed by			
	Coulomb's law: The			
	force is directly			
	proportional to the			
	charge of each ion and			
	inversely proportional			
	to the square of the			
	distance between the			
	centers of the ions.			
	a. For ions of a			
	given charge,			
	the smaller the			
	ions, and thus			
L				

		Curriculum Guide			
	the smaller the				
	distance				
	between ion				
	centers, the				
	stronger the				
	Coulombic				
	force of				
	attraction, and				
	the higher the				
	melting point.				
	b. lons with				
	higher charges				
	lead to higher				
	Coulombic				
	forces, and				
	therefore				
	higher melting				
	points.				
	X X The study of the specific				
	varieties of crystal lattices for				
	ionic compounds is beyond the				
	scope of this course and the AP				
	Exam.				
	Dationalo, This tanks has not				
	Rationale: This topic has not been part of AP Chemistry for				
	many years and including the				
	topic in the new course was not				
	viewed as the best way to				
	deepen understanding of the				
	big ideas.	Learning Objectives for EK			
	טוא ועכמז.	2.D.2:			
	Essential knowledge 2.D.2:				
	metallic solids are good	LO 2.25 The student is able			
L			l		

	Curriculum Guide	 	
conductors of heat and	to compare the properties		
electricity, have a wide range of	of metal alloys with their		
melting points, and are shiny,	constituent elements to		
malleable, ductile, and readily	determine if an alloy has		
alloyed.	formed, identify the type of		
A. A metallic solid can be represented as positive kernels (or cores) consisting of the	alloy formed, and explain the differences in properties using particulate level reasoning.		
nucleus and inner	LO 2.26 Students can use		
electrons of each atom surrounded by a sea of mobile valence	the electron sea model of metallic bonding to predict or make claims about the		
electrons.	macroscopic properties of		
a. Metals are	metals or alloys.		
good conductors because the electrons are delocalized and relatively free to move. b. Metals are	LO 2.27 The student can create a representation of a metallic solid that shows Essential characteristics of the structure and interactions present in the substance.		
malleable and ductile because deforming the solid does not change the environment immediately surrounding each metal core.	LO 2.28 The student is able to explain a representation that connects properties of a metallic solid to its structural attributes and to the interactions present at the atomic level.		

	Curriculum Guide	 	
B. Metallic solids are			
often pure substances,			
but may also be			
mixtures called alloys.			
a. Some			
properties of			1
alloys can be			
understood in			
terms of the			
size of the			
component			
atoms: —			1
Interstitial			1
alloys form			
between atoms			
of different			
radius, where			
the smaller			
atoms fill the			
interstitial			
spaces			
between the			1
larger atoms.			
(Steel is an			
example in			
which carbon			
occupies the			
interstices in			
iron.) The			
interstitial			
atoms make			
the lattice			
more rigid,			
L	[

 	Curriculum Guide	 	
decreasing			
malleability			
and ductility.			
—			
Substitutional			
alloys form			
between atoms			
of comparable			
radius, where			
one atom			
substitutes for			
the other in the			
lattice. (Brass is			
an example in			
which some			
copper atoms			
are substituted			
with a different			
element,			
usually zinc.)			
The density			
typically lies			
between those			
of the			
component			
metals, as with			
interstitial			
alloys,			
substitutional			
alloys are less			
malleable and			
ductile than			
pure metals.			
-			

	Curriculum Guide		
 b. Alloys typically retain a sea of mobile electrons and so remain conducting. c. Often the surface of a metal or alloy is changed through a chemical reaction. An example is formation of a chemically inert oxide layer in stainless steel, through reaction with oxygen in the air. 	Curriculum Guide		
Essential knowledge 2.D.3: Covalent network solids have properties that reflect their underlying 2-D or 3-D networks of covalent bonds. Covalent network solids generally have extremely high melting points and are hard. A. Covalent network	Learning Objectives for EK 2.D.3: LO 2.29 The student can create a representation of a covalent solid that shows Essential characteristics of the structure and interactions present in the substance.		

Curriculum Guide					
	solids consist of atoms				
	that are covalently	LO 2.30 The student is able			
	bonded together into a	to explain a representation			
	two-dimensional or	that connects properties of			
	three-dimensional	a covalent solid to its			
	network.	structural attributes and to			
	a. Covalent	the interactions present at the atomic level.			
	network solids	the atomic level.			
	are only				
	formed from				
	nonmetals:				
	elemental				
	(diamond,				
	graphite) or				
	two nonmetals				
	(silicon dioxide				
	and silicon				
	carbide).				
	b. The properties				
	of covalent				
	network solids				
	are a reflection				
	of their				
	structure.				
	c. Covalent				
	network solids				
	have high				
	melting points				
	because all of				
	the atoms are				
	covalently				
	bonded.				
	d. Three-				

	Curriculum Guide
	dimensional
	covalent
	networks tend
	to be rigid and
	hard because
	the covalent
	bond angles
	are fixed.
	e. Generally,
	covalent
	network solids
	form in the
	carbon group
	because of
	their ability to
	form four
	covalent
	bonds.
	B. Graphite is an allotrope
	of carbon that forms
	sheets of two-
	dimensional networks.
	a. Graphite has a
	high melting
	point because
	the covalent
	bonds between
	the carbon
	atoms making
	up each layer
	are relatively
	strong.
	b. Graphite is soft
L	

	Curriculum Guide
	because
	adjacent layers
	can slide past
	each other
	relatively
	easily; the
	major forces of
	attraction
	between the
	layers are
	London
	dispersion
	forces.
	C. Silicon is a covalent
	network solid and a
	semiconductor.
	a. Silicon forms a
	three-
	dimensional
	network similar
	in geometry to
	a diamond.
	b. Silicon's
	conductivity
	increases as
	temperature
	increases.
	c. Periodicity can
	be used to
	understand
	why doping
	with an
	element with
L	

	Curriculum Guide		
one extra			
valence			
electron			
converts silicon			
into an n-type			
semiconductin			
g (negative			
charge			
carrying)			
material, while			
doping with an			
element with			
one less			
valence			
electron			
converts silicon			
into a p-type			
semiconductin			
g (positive			
charge			
carrying)			
material.			
Junctions			
between n-			
doped and p-			
doped			
materials can			
be used to			
control			
electron flow,			
and thereby	Learning Objectives for EK		
are the basis of	2.D.4:		
modern			

	Curriculum Guide	
electronics.	LO 2.31 The student can	
Essential knowledge 2.D.4:	create a representation of a	
molecular solids with low	molecular solid that shows	
molecular weight usually have	Essential characteristics of	
low melting points and are not	the structure and	
expected to conduct electricity	interactions present in the substance.	
as solids, in solution, or when	substance.	
molten.	LO 2.32 The student is able	
	to explain a representation	
A. Molecular solids consist	that connects properties of	
of nonmetals, diatomic	a molecular solid to its	
elements, or compounds formed	structural attributes and to	
from two or more	the interactions present at	
nonmetals.	the atomic level.	
B. Molecular solids are		
composed of distinct,		
individual units of		
covalently bonded		
molecules attracted to		
each other through		
relatively weak		
intermolecular forces.		
a. Molecular		
solids are not		
expected to		
conduct		
electricity		
, because their		
electrons are		
tightly held		
within the		
covalent bonds		
of each		

		Curriculum Guide		
	constituent			
	molecule.			
b.	Molecular			
	solids generally			
	have a low			
	melting point			
	because of the			
	relatively weak			
	intermolecular			
	forces present			
	between the			
	molecules.			
C.	Molecular			
	solids are			
	sometimes			
	composed of			
	very large			
	molecules, or			
	polymers, with			
	important			
	commercial			
	and biological			
	applications.			

	Curriculum Guide					
General Topic	AP Standards	Learning Objective, Skills & Vocabulary	Resources & Activities	Assessments	Suggested Time (In Days)	
Enduring Understanding:		Learning Objective for Big Idea 3:	Teacher prepared, Tro. <i>A Molecular</i> <i>Approach, 3rd Edition,</i>	Teacher prepared tests, quizzes, etc.	See Year-at- a-glance	
Big Idea 3: Changes in matter involve the rearrangement and/or reorganization of atoms and/or the transfer of electrons.		LO 3.1 Students can translate among macroscopic observations of change, chemical equations, and particle views. Note: This learning objective applies to Essential knowledge components of 3A– 3C.	textbook chapter 4	Series available assessments online. (Optional)		
When chemical changes occur, the new		Vocabulary:				
substances formed have properties that		acetate formula, (C ₂ H ₃ O ₂) ⁻ acid-base reaction activation energy, Ea				
are distinguishable from the initial substance or substances. Such chemical processes may be observed in a variety of ways, and often involve changes in		ammonium formula, $(NH_4)^+$ anode carbonate formula, $(CO_3)^{2^-}$ catalyst cathode current cyanide formula, CN^- decomposition dichromate formula, $(Cr_2O_7)^{2^-}$ electric potential				

Curricu	lum Gui	de

		Curriculum Guide	 	
energy as well.		electrolytic cells		
Chemical change		electroplating		
is depicted in		endothermic reaction		
several ways,		enthalpy change, ΔH		
with the most		exothermic reaction		
important and		galvanic cell		
informative one		half reactions		
being the		hydroxide formula, OH ⁻		
balanced		nitrate formula, $(NO_3)^2$		
chemical		oxidation		
equation for the		oxidation-reduction reaction		
reaction. Because		oxidation-reduction reaction		
there is a large		oxidation state		
diversity of		permanganate formula,		
possible chemical		$(MnO_4)^{-1}$		
reactions, it is		phosphate formula, $(PO_4)^{3-}$		
useful to		precipitation		
categorize reactions and be				
able to recognize		reduction		
the category into		reduction potential		
which a given		spectator ions		
reaction falls.		stoichiometry		
		sulfate formula, $(SO_4)^{2}$		
		synthesis reactions		
Enduring		voltaic cell		
understanding				
3.A: Chemical	Ferential knowledge 2. A. 1. A	Learning Objective for EK		
changes are	Essential knowledge 3.A.1: A	3.A.1:		
represented by a	chemical change may be represented by a molecular,	LO 3.2 The student can		
balanced	ionic, or net ionic equation.	translate an observed		
chemical		chemical change into a		
equation that	Chemical equations represent	balanced chemical equation		

Curriculum Guide					
identifies the	chemical changes, and	and justify the choice of			
ratios with which	therefore must contain equal	equation type (molecular,			
reactants react	numbers of atoms of every	ionic, or net ionic) in terms			
and products	element on each side to be	of utility for the given			
form.	"balanced."	circumstances.			
Chemical	Depending on the context in				
reactions are the	which it is used, there are				
primary means	different forms of the balanced				
by which	chemical equations that are				
transformations	used by chemists. It is				
in matter occur.	important not only to write a				
Chemical	balanced molecular, ionic, or				
equations for	net ionic reaction equation, but				
reactions	also to have an understanding				
efficiently	of the circumstances under				
communicate the	which any of them might be				
rearrangements	the most useful form.				
of atoms that	The balanced chemical				
occur during a	equation for a reaction is				
chemical	capable of representing				
reaction.	chemistry at any level, and thus				
Describing a	it is important that it can be				
chemical change	translated into a symbolic				
can include	depiction at the particulate				
different forms	level, where much of the				
of the equation,	reasoning of chemistry occurs.				
such as					
molecular, ionic,	Because chemistry is ultimately				
and net ionic.	an experimental science, it is				
The equation	important that students be				
provides	able to describe chemical				
information	reactions observed in a variety				
about atoms,					

		Curriculum Guide	 	
ions and/or	of laboratory contexts.			
molecules		Learning Objectives for EK		
reacting (not		3.A.2:		
how they react)	Essential knowledge 3.A.2:	LO 3.3 The student is able to		
at the particulate	Quantitative information can	use stoichiometric		
level, as well as	be derived from stoichiometric	calculations to predict the		
quantitative	calculations that utilize the	results of performing a		
information	mole ratios from the balanced	reaction in the laboratory		
about	chemical equations. the role of	and/or to analyze deviations		
stoichiometry at	stoichiometry in real-world	from the expected results.		
the macroscopic	applications is important to			
level. Many	note, so that it does not seem	LO 3.4 The student is able to		
chemical	to be simply an exercise done	relate quantities (measured		
reactions involve	only by chemists.	mass of substances, volumes		
small whole number ratios of reactants and products as expressed by the stoichiometric coefficients of the balanced equation. Many modern	A. Coefficients of balanced chemical equations contain information regarding the proportionality of the amounts of substances involved in the reaction. These values can be used in	of solutions, or volumes and pressures of gases) to identify stoichiometric relationships for a reaction, including situations involving limiting reactants and situations in which the reaction has not gone to completion.		
materials are	chemical calculations			
composed of	that apply the mole			
non-	concept; the most			
stoichiometric	important place for this			
combinations of	type of quantitative			
the constituent	exercise is the			
elements.	laboratory.			
	a. Calculate			
	amount of			
	product			

		Curriculum Guide		
	expected to be			
	produced in a			
	laboratory			
	experiment.			
	b. Identify limiting			
	and excess			
	reactant;			
	calculate			
	percent and			
	theoretical			
	yield for a			
	given			
	laboratory			
	experiment.			
B.	The use of			
	stoichiometry with			
	gases also has the			
	potential for laboratory			
	experimentation,			
	particularly with			
	respect to the			
	experimental			
	determination of molar			
	mass of a gas.			
C.	Solution chemistry			
	provides an additional			
	avenue for laboratory			
	calculations of			
	stoichiometry,			
	including titrations.			
Endur	ing understanding 3.B:			
Chemi	ical reactions can be			
L				

 	Curriculum Guide		
classified by considering what			
the reactants are, what the			
products are, or how they			
change from one into the			
other. Classes of chemical			
reactions include synthesis,			
decomposition, acid-base, and			
oxidation-reduction reactions.			
There are a vast number of			
possible chemical reactions. In			
order to study and make			
predictions and comparisons			
concerning such a wide array of			
reactions, chemists have			
devised ways to classify them.			
Because of their prevalence in			
the laboratory and in real-			
world applications, two			
categories of reactions that are			
of particular importance are			
acid-base reactions and			
oxidation-reduction reactions.			
Also, a key contribution of		Teacher prepared,	
chemistry to society is the		Tro. A Molecular	
creation of new materials or		Approach, 3 rd Edition,	
compounds that benefit the		textbook chapters 1, 2,	
health and welfare of people in		and 3	
the community. Most often the	Learning Objectives for EK		
creation of new materials or	3.B.1:		
compounds can be considered	LO 3.5 The student is able		
as synthesis reactions, another	to design a plan in order to		
important reaction category.	collect data on the synthesis		

Essential knowledge 3.B.1:	or decomposition of a		
Synthesis reactions are those in			
which atoms and/or molecules			
combine to form a new	the law of definite		
	proportions.		
compound. Decomposition is the reverse of synthesis, a process whereby molecules are decomposed, often by the use of heat.A. Synthesis or decomposition reactions can be used for acquisition of basic lab techniques and observations that help students deal with the abstractions of atoms and stoichiometric calculations.Essential knowledge 3.B.2: in a neutralization reaction, proton are transferred from an acid to a base.A. The amphoteric nature of water plays an important role in the	 proportions. LO 3.6 The student is able to use data from synthesis or decomposition of a compound to confirm the conservation of matter and the law of definite proportions. Learning Objective for EK 3.B.2: LO 3.7 The student is able to identify compounds as Brønsted-Lowry acids, bases, and/or conjugate acid-base pairs, using proton-transfer reactions to iustify the identification 	Teacher prepared, Tro. <i>A Molecular</i> <i>Approach, 3rd Edition,</i> textbook chapters 15 and 16	
chemistry of aqueous solutions, since water			
can both accept			
protons from and			
donate protons to			

		Curriculum Guide		
	dissolved species.			
	B. Acid-base reactions:			
	a. Only reactions			
	in aqueous			
	solutions are			
	considered.			
	b. The Brønsted-			
	Lowry concept			
	of acids and			
	bases is the			
	focus of the			
	course.			
)	K X Lewis acid-base concepts			
	re beyond the scope of this			
	ourse and the AP Exam.			
	ationale: The definition of			
	ewis acids is commonly taught			
	n a first-year high school			
	hemistry course and is			
	herefore considered prior			
	nowledge. Note: The			
	ormation of complex ions and			
	he qualitative impact on			
	olubility are both part of the		Tooshow we wanted	
A	AP Chemistry course.		Teacher prepared, Tro. <i>A Molecular</i>	
	C. When an acid or base		Approach, 3 rd Edition,	
	ionizes in water, the		textbook chapters 4,	
	conjugate acid-base		16, and 18	
	pairs can be identified	Learning Objectives for EK		
	and their relative	3.B.3:		
	strengths compared.			
		LO 3.8 The student is able to		
E	ssential knowledge 3.B.3:	identify redox reactions and		

	Curriculum Guide	
In oxidation-reduction (re	edox) justify the identification in	
reactions, there is a net t		
of electrons. the species		
loses electrons is oxidized		
the species that gains ele		
is reduced.	results of an experiment	
A. In a redox reaction	on, involving a redox titration.	
electrons are		
transferred from	the	
species that is ox	idized	
to the species that	at is	
reduced.		
XX Language of reducing	g	
agent and oxidizing agent	-	
beyond the scope of this		
and the AP Exam. Rationa		
Understanding this termi		
is not necessary for reaso		
about redox chemistry.		
about redox chemistry.		
B. Oxidation number	rs	
may be assigned	to	
each of the atom	s in	
the reactant and		
products; this is o	often	
an effective way	to	
identify the oxidi		
and reduced spec		
a redox reaction.		
C. Balanced chemic		
equations for rec		
reactions can be		
constructed from		
tabulated half-		

		Curriculum Guide		
Enduring understanding 3.C: Chemical and physical transformations may be observed in several ways and typically involve a change in energy. An important	 reactions. D. Recognizing that a reaction is a redox reaction is an important skill; an apt application of this type of reaction is a laboratory exercise where students perform redox titrations. E. There are a number of important redox reactions in energy production processes (combustion of hydrocarbons and metabolism of sugars, fats, and proteins). Essential knowledge 3.C.1: Production of heat or light, formation of a gas, and formation of a precipitate and/or a color change are possible evidences that a chemical change has occurred. A. Laboratory observations are made at the macroscopic level, so students must be able to characterize changes in matter using 	Learning Objective for EK 3.C.1: LO 3.10 The student is able to evaluate the classification of a process as a physical change, chemical change, or ambiguous change based on both macroscopic observations and the distinction between rearrangement of covalent interactions and	Teacher prepared, Tro. <i>A Molecular</i> <i>Approach, 3rd Edition,</i> textbook chapters 1, 2, 3, 9, and 10	

			Curriculum Guide		
component of a		visual clues and then	noncovalent interactions.		
full		make representations			
understanding of		or written descriptions.			
chemical change	В.	Distinguishing the			
involves direct		difference between			
observation of		chemical and physical			
that change;		changes at the			
thus, laboratory		macroscopic level is a			
experiences are		challenge; therefore,			
Essential for the		the ability to			
AP Chemistry		investigate chemical			
student to		properties is important.			
develop an	С.	In order to develop the			
appreciation of		ability to distinguish			
the discipline. At		experimentally			
the AP course		between chemical and			
level,		physical changes,			
observations are		students must make			
made on		observations and			
macroscopically		collect data from a			
large samples of		variety of reactions and			
chemicals; these		physical changes within			
observations		the laboratory setting.			
must be used to	D.	Classification of			
infer what is		reactions provides			
occurring at the		important			
particulate level.		organizational clarity		Teacher prepared,	
This ability to		for chemistry;		Tro. A Molecular Approach, 3 rd Edition,	
reason about		therefore, students		textbook chapter 6	
observations at		need to identify			
one level		precipitation, acid-			
(macroscopic)		base, and redox			
using models at		reactions.			
	1				

		Curriculum Guide		
another level				
(particulate)	Essential knowledge 3.C.2:			
provides an	Net changes in energy for a			
important	chemical reaction can be	Learning Objective for EK		
demonstration of	endothermic or exothermic.	3.C.2:		
conceptual	A. Macroscopic			
understanding	observations of energy	LO 3.11 The student is able		
and requires	changes when	to interpret observations		
extensive	chemicals react are	regarding macroscopic		
laboratory	made possible by	energy changes associated		
experience. The	measuring temperature	with a reaction or process to		
difference	changes.	generate a relevant		
between physical	B. These observations	symbolic and/or graphical		
and chemical	should be placed within	representation of the energy		
change is best	the context of the	changes.		
explained at the	language of exothermic			
particulate level.	and endothermic			
Laboratory	change.			
observations of	C. The ability to translate			
temperature	observations made at			
change	the macroscopic level			
accompanying	in the laboratory to a			
physical and	conceptual framework			
chemical	is aided by a graphical			
transformations	depiction of the			
are	process called an			
manifestations of	energy diagram, which			
the energy	provides a visual			
changes	representation of the			
occurring at the	exothermic or			
particulate level.	endothermic nature of			
This has practical	a reaction.			
applications,	D. It is important to be			
	able to use an			

such as energy understanding of energy changes in combustion of chemical reactions to identify the role of energy endothermic and exothermic reactions in thermal energy real world processes. and/ or batteries (chemical energy chemes) real world processes. and/ or batteries (chemical energy chemes) real world processes. and/ or batteries (chemical energy chemes) real world processes. and/ or batteries (chemical energy chemes) real world processes. and/ or batteries (chemical energy chemes) real world processes. and/ or batteries (chemical energy chemes) real world processes. and/ or batteries (chemical energy chemes) real world processes. and/ or batteries (chemical energy chemes) real world processes. and/ or batteries (chemical energy chemes) real world processes. and/ or batteries (chemical energy chemes) real world processes. and/ or batteries (chemical energy chemes) real world processes. and/ or batteries (chemical energy chemes) real world processes. and/ or batteries (chemical energy chemes) real world processes. and/ or batteries (chemical energy chemes) real world processes. and/ or feator proversion to the chemical and electricity the volume in galvanic or electrolytic real world processes to study or fredox reactions that electrolytic reactions abad occur within electrolytic reactions and or franday's anatyre data regarding galvanic or electrolytic cells to identify properties of the underlying redox reactions. The reactions of galvanic and electrolytic cells visual regresting galvanic and electrolytic cells v			Curriculum Guide	1	· · · · · · · · · · · · · · · · · · ·
Combustion of fuels (chemical energychemical reactions to identify the role of energyApproach, 3'' Edition, textbook chapters 16 and 18Conversion to thermal energy (chemical energy (chemical and electrolemistry shows the electrical energy).Essential knowledge 3.C.3: Electrochemistry shows the inter-conversion between chemical and electrolytic cells.Learning Objectives for EK 3.C.3: Los 3.12 The student can make qualitative or quantitative predictions about galvania or electroletic cells.Learning Objectives for EK 3.C.3: Los 3.12 The student can make qualitative or quantitative predictions about galvania or electrolytic cells.Learning Objectives for EK 3.C.3: Los 3.12 The student can make qualitative or quantitative predictions about galvania or electrolytic reactions stat occur within electrolytic cells.Los 3.12 The student can make qualitative or quantitative predictions about galvania or electrolytic reactions and optentials and/ or Faraday's laws.Los 3.13 The student can analyze data regarding galvania or electrolytic cells to identify properties of the underlying redox reactions.Los 3.13 The student can analyze data regarding galvanic or electrolytic cells to identify properties of the underlying redox reactions.Los 3.13 The student can analyze data regarding galvanic and electrolytic cells or analyze tar ergarding galvanic and electrolytic cells are tools of analysis to identify wher half- reactions occur and theLos 3.13 The student can analyze data regarding galvanic and electrolytic cells to identify properties of the underlying redox reactions.Los 3.13 The student can analyze data regarding galvan		-			
fuels (chemical energy identify the role of end thermic and conversion to exothermic reactions in thermal energy) identify the role of end thermic reactions in real world processes. and/ or batteries (chemical energy) exothermic reactions in real world processes. inter-conversion between chemical and electrical energy in galvanic and electrolytic cells. Essential knowledge 3.C.3: Lo 3.12 The student can make qualitative or quantitative predictions about galvanic or electrolytic reactions based on haf-cell reactions based on current in galvanic cells, or are driven by an externally applied electrolytic cells. Learning Objectives for EK 3.C.3: Lo 3.12 The student can make qualitative or quantitative predictions about galvanic or electrolytic reactions based on haf-cell reactions abased on haf-cell reactions and potentials and/ or Faraday's laws. Io 3.13 The student can malvie data regarding galvanic or electrolytic cells to identify properties of the underlying redox reactions.	production via	energy changes in			
Indensities and 18 conversion to exothermic reactions in thermal energy real world processes. and/ or batteries (chemical energy (chemical energy Electrochemistry shows the electrical inter-conversion between energy). chemical and electrical energy inglyanic and electrolytic cells. Learning Objectives for EK A. Electrochemistry encompasses the study of redox reactions either generate electrical encry entropy and 18	combustion of	chemical reactions to			
energy exothermic and decreations in thermal energy real world processes. and/ or batteries chemical energy real world processes. (chemical energy) real world processes. real world processes. energy). Electrochemistry shows the electrical energy in galvanic and electrolytic cells. Learning Objectives for EK A. Electrochemistry quantitative or quantitative predictions and or fared or reactions that occur within electrolytic cells. about galvanic or quantitative predictions and petertolytic cells. A. Electrochemistry generate electrical cells. petertolytic reactions had or haf-cell reactions and petertolytic cells. A. Electrochemical energy on talf-cell reactions and petertolytic cells. petertolytic cells. B. The reactions either generate electrical current in galvanic and electrolytic cells. visual representations of galvanic and electrolytic cells visual representations of galvanic and electrolytic cells are tools of analysis to identify properties of the underlying redox reactions.	fuels (chemical	identify the role of		•	
thermal energy and/ or batteries (chemical energy conversion to electrical energy). Essential knowledge 3.C.3: Electrochemistry shows the inter-conversion between chemical and electrical energy in galvanic and electrolytic cells. Learning Objectives for EK 3.C.3: LO 3.12 The student can make qualitative or quantitative predictions about galvanic or electrolytic reactions that occur within electrochemical cells. The reactions either generate electrical current in galvanic cells, or are driven by an externally applied electrolytic cells. Visual representations of galvanic and electrolytic cells are tools of analysis to identify where half- reactions occur and the L0 3.13 The student can make qualitative or quantitative predictions about galvanic or electrolytic reactions based on half-cell reactions and potentials and/ or Faraday's laws.	energy	endothermic and		and 18	
and/ or batteries (chemical energy conversion to electrical energy). Essential knowledge 3.C.3: Electrochemistry shows the inter-conversion between chemical and electrolytic cells. Learning Objectives for EK 3.C.3: LO 3.12 The student can make qualitative or quantitative predictions about galvanic or electrolytic reactions that occur within electrochemical cells. The reactions either generate electrical current in galvanic cells, or are driven by an externally applied electrolytic cells. Visual representations of galvanic and electrolytic cells. Visual representations of galvanic and electrolytic cells are tools of analysis to identify where half- reactions occur and the Lo3 .13 The student can make qualitative or quantitative predictions about galvanic or electrolytic cells. The reactions and potentials and/ or Faraday's laws. LO 3.13 The student can analyze data regarding galvanic or electrolytic cells to identify properties of the underlying redox reactions.	conversion to	exothermic reactions in			
(chemical energy Essential knowledge 3.C.3: conversion to Electrochemistry shows the electrical inter-conversion between energy). chemical and electrical energy in galvanic and electrolytic Learning Objectives for EK 3.C.3: L0 3.12 The student can make qualitative or quantitative predictions about galvanic and electrolytic electrolytic reactions based occur within on half-cell reactions and penerate electrical current in galvanic calls, or are driven by an externally applied electrolytic cells. L0 3.13 The student can maky custor galvanic or electrolytic cells. Io 3.13 The student can analyze data regarding galvanic or electrolytic cells. underlying redox reactions. representations of galvanic or electrolytic cells are to dentify properties of the underlying redox reactions. underlying redox reactions.	thermal energy)	real world processes.			
conversion to electrical energy).Electrochemistry shows the inter-conversion between chemical and electrical energy in galvanic and electrolytic cells.Learning Objectives for EK 3.C.3: LO 3.12 The student can make qualitative or quantitative predictions about galvanic or electrolytic cells.A. Electrochemistry encompasses the study of redox reactions that occur within electrochemical cells. The reactions either generate electrical current in galvanic cells, or are driven by an externally applied electrolytic cells. Visual representations of galvanic and electrolytic cells visual representations of galvanic and electrolytic cells visual representations of galvanic and electrolytic cells visual representations of galvanic and electrolytic cells reactions.Learning Objectives for EK 3.C.3: LO 3.12 The student can make qualitative or quantitative predictions about galvanic or electrolytic cells. UO 3.13 The student can analyze data regarding galvanic or electrolytic cells to identify properties of the underlying redox reactions.UO 3.13 The student can analyze data regarding galvanic and electrolytic cells are tools of analysis to identify where half- reactions occur and the	and/ or batteries				
electrical energy). inter-conversion between chemical and electrical energy in galvanic and electrolytic cells. Learning Objectives for EK 3.C.3: LO 3.12 The student can make qualitative or quantitative predictions about galvanic or electrolytic reactions based on half-cell reactions and potentials and/ or Faraday's laws. A. Electrochemistry encompasses the study of redox reactions that occur within electrochemical cells. The reactions either generate electrical current in galvanic cells, or are driven by an externally applied electrolytic cells. Visual representations of galvanic and electrolytic cells are tools of analysis to identify where half- reactions occur and the LO 3.13 The student can analyze data regarding galvanic or electrolytic cells	(chemical energy	-			
energy). energy). chemical and electrical energy in galvanic and electrolytic cells. A. Electrochemistry encompasses the study of redox reactions that occur within electrochemical cells. The reactions either generate electrical current in galvanic cells, or are driven by an externally applied electrolytic cells. Visual representations of galvanic and electrolytic cells are tools of analysis to identify where half- reactions occur and the	conversion to	-			
Energy): Interlation of electrolytic cells. 3.C.3: Interlation of electrolytic cells. Interlation of electrolytic cells. Interlation of electrolytic cells. A. Electrochemistry quantitative or encompasses the study of redox reactions that occur within occur within on half-cell reactions based on half-cell reactions and generate electrical potentials and/ or Faraday's laws. generate electrical LO 3.13 The student can analyze data regarding galvanic cor galvanic or electrolytic cells LO 3.13 The student can analyze data regarding galvanic or electrolytic cells to identify properties of the underlying redox reactions. representations of galvanic and electrolytic cells are tools of analysis to identify where half- reactions occur and the eactions occur and the eactions occur and the	electrical		Leonaine Obientines for FK		
LO 3.12 The student can make qualitative or quantitative predictions about galvanic or electrolytic reactions based occur within of redox reactions that occur within electrochemical cells. The reactions either generate electrical current in galvanic cells, or are driven by an externally applied electrolytic cells. Visual representations of galvanic and electrolytic cells are tools of analysis to identify where half- reactions occur and the	energy).				
Cells.make qualitative or quantitative predictions about galvanic or electrolytic reactions based occur withinmake qualitative or quantitative predictions about galvanic or electrolytic reactions based on half-cell reactions and potentials and/ or Faraday's laws.The reactions either generate electrical current in galvanic cells, or are driven by an externally applied electrolytic cells. Visual representations of galvanic and electrolytic cells are tools of analysis to identify where half- reactions occur and theLO 3.13 The student can analyze data regarding galvanic or electrolytic cells to identify where half- reactions occur and theLO 3.13 The student can analyze data regarding galvanic or electrolytic cells to identify where half- reactions occur and the					
A.Electrochemistry encompasses the study of redox reactions that occur within electrolytic reactions and electrolytic reactions and optentials and/ or Faraday's laws.about galvanic or electrolytic reactions based on half-cell reactions and potentials and/ or Faraday's laws.LO3.13 The student can analyze data regarding galvanic or electrolytic cells to identify properties of the electrolytic cells are tools of analysis to identify where half- reactions occur and theLO3.13 The student can analyze data regarding galvanic or electrolytic cells to identify where half- reactions occur and theLO3.13 The student can analyze data regarding galvanic or electrolytic cells to identify properties of the underlying redox reactions.IIII IIII IIIIIIIIIIIIIIIIIIIIIIIIIII		cells.			
encompasses the study of redox reactions that occur withinabout galvanic or electrolytic reactions based on half-cell reactions and potentials and/ or Faraday's laws.electroichemical cells. The reactions either generate electrical current in galvanic cells, or are driven by an externally applied electrolytic cells. Visual representations of galvanic and electrolytic cells are tools of analysis to identify where half- reactions occur and theLO 3.13 The student can analyze data regarding galvanic or electrolytic cells to identify underlying redox reactions.		A. Electrochemistry			
of redox reactions that occur within electrochemical cells. The reactions either generate electrical current in galvanic cells, or are driven by an externally applied electrolytic cells. Visual representations of galvanic and electrolytic cells are tools of analysis to identify where half- reactions occur and theelectrolytic reactions based on half-cell reactions and potentials and/ or Faraday's laws.LO 3.13 The student can analyze data regarding galvanic or electrolytic cells to identify properties of the underlying redox reactions.LO 3.13 The student can analyze data regarding galvanic or electrolytic cells to identify properties of the underlying redox reactions.		-			
occur withinon half-cell reactions and potentials and/ or Faraday's laws.electrochemical cells. generate electrical current in galvanic cells, or are driven by an externally applied electrical potential in electrolytic cells. Visual representations of galvanic and electrolytic cells are tools of analysis to identify where half- reactions occur and theOn half-cell reactions and potentials and/ or Faraday's laws.Image: coll coll coll coll coll coll coll col			•		
electrochemical cells.potentials and/ or Faraday'sThe reactions eitherlaws.generate electricalLO 3.13 The student cancurrent in galvanicanalyze data regardingcells, or are driven byan externally appliedelectrical potential inelectrical potential inelectrolytic cells. Visualrepresentations ofgalvanic andelectrolytic cells aretools of analysis toidentify where half-reactions occur and theelectricy where half-			-		
The reactions either generate electrical current in galvanic cells, or are driven by an externally applied electrical potential in electrolytic cells. Visual representations of galvanic and electrolytic cells are tools of analysis to identify where half- reactions occur and theLo 3.13 The student can analyze data regarding galvanic or electrolytic cells to identify properties of the underlying redox reactions.		electrochemical cells.			
generate electrical current in galvanic cells, or are driven by an externally applied electrical potential in electrolytic cells. Visual representations of galvanic and electrolytic cells are tools of analysis to identify where half- reactions occur and theLO 3.13 The student can analyze data regarding 					
Current in galvanic cells, or are driven by an externally applied electrical potential in electrolytic cells. Visual representations of galvanic and electrolytic cells are tools of analysis to identify where half- reactions occur and the		generate electrical			
cells, or are driven by an externally applied electrical potential in electrolytic cells. Visual representations of galvanic and electrolytic cells are tools of analysis to identify where half- reactions occur and theanalyze data regarding galvanic or electrolytic cells to identify properties of the underlying redox reactions.		•			
an externally applied electrical potential in electrolytic cells. Visual representations of galvanic and electrolytic cells are tools of analysis to identify where half- reactions occur and the		cells, or are driven by			
electrical potential in to identify properties of the electrolytic cells. Visual underlying redox reactions. representations of galvanic and electrolytic cells are tools of analysis to identify where half- reactions occur and the		· · · · · · ·	• ·		
electrolytic cells. Visual underlying redox reactions. representations of galvanic and galvanic and electrolytic cells are tools of analysis to identify where half- reactions occur and the electrolytic					
representations of galvanic and electrolytic cells are tools of analysis to identify where half- reactions occur and the		-	underlying redox reactions.		
galvanic and electrolytic cells are tools of analysis to identify where half- reactions occur and the		-			
electrolytic cells are tools of analysis to identify where half- reactions occur and the		-			
tools of analysis to identify where half- reactions occur and the		0			
identify where half- reactions occur and the		-			
reactions occur and the		-			
direction of current		-			
		direction of current			

		Curriculum Guide		
	flow.			
	B. Oxidation occurs at the			
	anode, and reduction			
	occurs at the cathode			
	for all electrochemical			
	cells.			
XX	Labeling an electrode as			
pos	itive or negative is beyond			
the	scope of this course and			
the	AP Exam. Rationale: The			
sigr	on the electrode is			
diff	erent for electrochemical			
and	electrolytic cells, but the			
mo	st important concept is that			
oxi	lation always takes place at			
the	anode in either cell type.			
Lab	eling electrodes does not			
pro	vide a deeper			
unc	erstanding of			
ele	ctrochemistry.			
	C. The overall electrical			
	potential of galvanic			
	cells can be calculated			
	by identifying the			
	oxidation half-reaction			
	and reduction half-			
	reaction, and using a			
	table of Standard			
	Reduction Potentials.			
	D. Many real systems do			
	not operate at			
	standard conditions			

	Curriculum Guide		
and the electrical			
potential			
determination must			
account for the effect			
of concentrations. The			
qualitative effects of			
concentration on the			
cell potential can be			
understood by			
considering the cell			
potential as a driving			
force toward			
equilibrium, in that the			
farther the reaction is			
from equilibrium, the			
greater the magnitude			
of the cell potential.			
The standard cell			
potential, Eo,			
corresponds to the			
standard conditions of			
Q = 1. As the system			
approaches			
equilibrium, the			
magnitude (i.e.,			
absolute value) of the			
cell potential			
decreases, reaching			
zero at equilibrium			
(when Q = K).			
Deviations from			
standard conditions			
that take the cell			

	Curriculum Guide		
further from			
equilibrium than Q = 1			
will increase the			
magnitude of the cell			
potential relative to E°.			
Deviations from			
standard conditions			
that take the cell closer			
to equilibrium than Q =			
1 will decrease the			
magnitude of the cell			
potential relative to E°.			
In concentration cells,			
the direction of			
spontaneous electron			
flow can be determined			
by considering the			
direction needed to			
reach equilibrium.			
XX The Nernst equation is			
beyond the scope of this course			
and the AP Exam. Rationale:			
Qualitative reasoning about the			
effects of concentration on cell			
potential is part of the course.			
However, inclusion of			
algorithmic calculations was not			
viewed as the best way to			
deepen understanding of the big			
ideas.			
E. ΔG° (standard Gibbs free			
energy) is proportional			
to the negative of the			

		Curriculum Guide		
	cell potential for the			
	redox reaction from			
	which it is constructed.			
F.	Faraday's laws can be			
	used to determine the			
	stoichiometry of the			
	redox reactions			
	occurring in an			
	electrochemical cell with			
	respect to the following:			
	a. Number of			
	electrons			
	transferred			
	b. Mass of			
	material			
	deposited or			
	removed from			
	an electrode			
	c. Current			
	d. Time elapsed			
	e. Charge of ionic			
	species			

General Topic	AP Standards	Learning Objective, Skills & Vocabulary	Resources & Activities	Assessments	Suggested Time (In Days)
Enduring Understanding: Big Idea 4: Rates of chemical reactions are determined by details of the molecular collisions. Chemical changes occur over a wide range of time scales. Practically, the manner in which the rate of change is observed is to measure changes in concentration of reactant or product species as a function of	Essential knowledge 4.A.1: the rate of a reaction is influenced by the concentration or pressure of reactants, the phase of the reactants and products, and environmental factors such as temperature and solvent. A. The rate of a reaction is measured by the amount of reactants converted to products per unit of time. B. A variety of means exist to experimentally measure the loss of reactants or increase of products as a function of time. One important method involves the spectroscopic determination of concentration through Beer's law. C. The rate of a reaction is	Skills & VocabularyLearning Objective for EK4.A.1:LO 4.1 The student is able to design and/or interpret the results of an experiment regarding the factors (i.e., temperature, concentration, surface area) that may influence the rate of a reaction.Vocabulary for Big Idea 4:acid-base catalysis beer's law bimolecular catalyst elementary reactions enzyme catalysis first order, straight line In[A] vs. t Maxwell-Boltzmann distribution orientations rate law	Teacher prepared, Tro. A Molecular Approach, 3 rd Edition, textbook chapter 13	Teacher prepared	_
time. There are a number of possible factors	influenced by reactant concentrations (except in zero order	reaction rate second order, straight line 1/[A] vs. t			

		Curriculum Guide		
that influence	processes),	spectrophotometry		
the observed	temperature, surface	surface catalysis		
speed of reaction	area, and other	trimolecular		
at the	environmental factors.	zero order, straight line [A]		
macroscopic		vs.t		
level, including	Essential knowledge 4.A.2:			
the	the rate law shows how the rate	Learning Objective for EK		
concentration of	depends on reactant	4.A.2:		
reactants, the	concentrations.			
temperature, and	A. The rate law expresses	LO 4.2 The student is able to		
other	the rate of a reaction	analyze concentration vs.		
environmental	as proportional to the	time data to determine the		
factors.	concentration of each	rate law for a zeroth-, first-, or second-order reaction.		
Measured rates	reactant raised to a	of second-order reaction.		
for reactions	power. The power of			
observed at the	each reactant in the			
macroscopic	rate law is the order of			
level can	the reaction with			
generally be	respect to that			
characterized	reactant. The sum of			
mathematically	the powers of the			
in an expression	reactant			
referred to as the	concentrations in the			
rate law. In	rate law is the overall			
addition to these	order of the reaction.			
macroscopic-	When the rate is			
level	independent of the			
characterizations	concentration of a			
, the progress of	reactant, the reaction			
reactions at the	is zeroth order in that			
particulate level	reactant, since raising			
can be connected	the reactant			
to the rate law.	concentration to the			

			Curriculum Guide		
Factors that		power zero is			
influence the		equivalent to the			
rate of reaction,		reactant concentration			
including		being absent from the			
speeding of the		rate law.			
reaction by the	В.	In cases in which the			
use of a catalyst,		concentration of any			
can be		other reactants remain			
delineated as		Essentially constant			
well.		during the course of			
Enduring		the reaction, the order			
understanding		of a reaction with			
4.A: Reaction		respect to a reactant			
rates that		concentration can be			
depend on		inferred from plots of			
temperature and		the concentration of			
other		reactant versus time.			
environmental		An appropriate			
factors are		laboratory experience			
determined by		would be for students			
measuring		to use			
changes in		spectrophotometry to			
concentrations of		determine how			
reactants or		concentration varies			
products over		with time.			
time.	C.	The method of initial			
		rates is useful for			
The rate of a		developing conceptual			
reaction is the		understanding of what			
rate at which		a rate law represents,			
reactants are		but simple algorithmic			
converted to		application should not			
products, and is		be considered mastery			
L					

		Curriculum Guide		
given in terms of	of the concept.			
the change in	Investigation of data			
concentrations	for initial rates enables			
with time. Rates	prediction of how		Teacher prepared,	
of reactions span	concentration will vary		Tro. A Molecular	
a wide range,	as the reaction		<i>Approach, 3rd Edition,</i> textbook chapter 13	
and generally	progresses.		textbook chapter 13	
increase with	Essential knowledge 4.A.3:	Learning Objective for 514		
reactant	the magnitude and temperature	Learning Objective for EK		
concentrations	dependence of the rate of	4.A.3:		
and with	reaction is contained	LO 4.3 The student is able to		
temperature. The	quantitatively in the rate	connect the half-life of a		
rate may be	constant.	reaction to the rate constant		
measured by	A. The proportionality	of a first-order reaction and		
monitoring	constant in the rate law	justify the use of this		
concentrations as	is called the rate	relation in terms of the		
a function of	constant.	reaction being a first-order		
time, and the	B. The rate constant is an	reaction.		
results of many	important measurable			
experiments may	quantity that			
be summarized	characterizes a			
with a	chemical reaction.			
mathematical	C. Rate constants vary			
expression	over many orders of			
known as the	magnitude because			
rate law. The rate	reaction rates vary			
law gives the	widely.			
dependence of	D. The temperature			
the rate on	dependence of			
reactant	reaction rates is			
concentrations,	contained in the			
and contains a	temperature			
proportionality	dependence of the rate			
L	1		•	

		Curriculum Guide		
constant called the rate constant.	constant. E. For first-order reactions, half-life is often used as a representation for the rate constant because they are inversely proportional, and the half-life is independent of concentration. For example, radioactive decay processes provide real-world context.		Teacher prepared, Tro. <i>A Molecular</i> <i>Approach, 3rd Edition,</i> textbook chapter 13	
Enduring understanding 4.B: Elementary reactions are mediated by collisions between molecules. Only collisions having sufficient energy and proper relative orientation of reactants lead to products. Reactions proceed through	Essential knowledge 4.B.1: elementary reactions can be unimolecular or involve collisions between two or more molecules. A. The order of an elementary reaction can be inferred from the number of molecules participating in a collision: unimolecular reactions are first order, reactions involving bimolecular collisions are second order, etc. B. Elementary reactions	Learning Objective for EK 4.B.1: LO 4.4 The student is able to connect the rate law for an elementary reaction to the frequency and success of molecular collisions, including connecting the frequency and success to the order and rate constant, respectively.	Teacher prepared, Tro. <i>A Molecular</i>	

elementary steps	involving the		Approach, 3 rd Edition,	
involving one or	simultaneous collision		textbook chapter 13	
more reactants.	of three particles are			
In a unimolecular	rare.	Learning Objective EK 4.B.2:		
reaction,	Essential knowledge 4.B.2: Not	LO 4.5 The student is able to		
collisions with	all collisions are successful. to	explain the difference		
other molecules	get over the activation energy	between collisions that		
activate the	barrier, the colliding species	convert reactants to		
reactant such	need sufficient energy. Also,	products and those that do		
that it is	the orientations of the reactant	not in terms of energy		
converted into	molecules during the collision	distributions and molecular		
product. In	must allow for the	orientation.		
bimolecular and	rearrangement of reactant			
higher-order	bonds to form product bonds.			
reactions,	A. Unimolecular reactions			
collisions	occur because			
between	collisions with solvent			
reactants lead to	or background			
formation of	molecules activate the			
products, provided both	molecule in a way that			
the energy of the	can be understood in			
collision and the	terms of a Maxwell-			
relative	Boltzmann thermal			
orientation of	distribution of particle			
reactants are	energies.			
favorable for	B. Collision models			
reaction. A	provide a qualitative			
successful	explanation for order			
collision can be	of elementary			
viewed as	reactions and the			
proceeding along	temperature			
some single	dependence of the rate			
0 -	constant.			

		Curriculum Guide			
reaction	C. In most reactions, only				
coordinate. The	a small fraction of the				
energy profile	collisions leads to a				
along this	reaction. Successful				
reaction	collisions have both				
coordinate	sufficient energy to				
provides a useful	overcome activation				
construct for	energy barriers and				
reasoning about	orientations that allow				
the connection	the bonds to rearrange				
between the	in the required				
energetics of a	manner.				
reaction and the	D. The Maxwell-				
rate of the	Boltzmann distribution				
reaction. In	describes the				
particular, this	distribution of particle				
profile includes	energies; this		Teacher prepared,		
the activation	distribution can be		Tro. A Molecular		
energy required	used to gain a		Approach, 3 rd Edition,		
to overcome the	qualitative estimate of		textbook chapter 13		
energy barrier	the fraction of		•		
between	collisions with				
reactants and	sufficient energy to				
products.	lead to a reaction, and				
	also how that fraction				
	depends on				
	temperature.				
		Learning Objective for for			
	Essential knowledge 4.B.3: A	EK 4.B.3:			
	successful collision can be				
	viewed as following a reaction	LO 4.6 The student is able to			
	path with an associated energy	use representations of the			
	profile.	energy profile for an			
			I	1	l

		Curriculum Guide		
A.	Elementary reactions	elementary reaction (from		
	typically involve the	the reactants, through the		
	breaking of some	transition state, to the		
	bonds and the forming	products) to make		
	of new ones. It is	qualitative predictions		
	usually possible to view	regarding the relative		
	the complex set of	temperature dependence of		
	motions involved in	the reaction rate.		
	this rearrangement as			
	occurring along a single			
	reaction coordinate.			
B.	The energy profile gives			
	the energy along this			
	path, which typically			
	proceeds from			
	reactants, through a			
	transition state, to			
	products.			
C.	The Arrhenius equation			
	can be used to			
	summarize			
	experiments on the			
	temperature			
	dependence of the rate			
	of an elementary			
	reaction and to			
	interpret this			
	dependence in terms of			
	the activation energy			
	needed to reach the			
	transition state.			
X X Ca	alculations involving the			
Arrhe	enius equation are			
L				

		Curriculum Guide		
	beyond the scope of this			
	course and the AP Exam.			
	Rationale: The conceptual aspects of the Arrhenius equation and the interpretation of graphs is part of the course. However, inclusion of algorithmic calculations was not viewed as the best way to deepen understanding of the big ideas.		Teacher prepared, Tro. <i>A Molecular</i> <i>Approach, 3rd Edition,</i> textbook chapter 13	
Enduring understanding 4.C: Many reactions proceed via a series of elementary reactions. Many reactions proceed through a series of elementary reactions or steps, and this series of steps is referred to as the reaction	 Essential knowledge 4.C.1: the mechanism of a multistep reaction consists of a series of elementary reactions that add up to the overall reaction. A. The rate law of an elementary step is related to the number of reactants, as accounted for by collision theory. B. The elementary steps add to give the overall reaction. The balanced chemical equation for the overall reaction specifies only the stoichiometry of the reaction, not the rate. 	Learning Objective for EU 4C: LO 4.7 The student is able to evaluate alternative explanations, as expressed by reaction mechanisms, to determine which are consistent with data regarding the overall rate of a reaction, and data that can be used to infer the presence of a reaction intermediate.		

		Curriculum Guide		
mechanism. The	C. A number of			
steps of the	mechanisms may be			
mechanism sum	postulated for most			
to give the	reactions, and			
overall reaction;	experimentally			
the balanced	determining the			
chemical	dominant pathway of			
equation for the	such reactions is a			
overall reaction	central activity of			
specifies the	chemistry.			
stoichiometry.	Essential knowledge 4.C.2: in			
The overall rate	many reactions, the rate is set			
of the reaction is	by the slowest elementary			
an emergent	reaction, or rate-limiting step.			
property of the rates of the individual reaction steps. For many reactions, one step in the reaction mechanism is sufficiently slow so that it limits the rate of the overall reaction. For such reactions, this	 A. For reactions in which each elementary step is irreversible, the rate of the reaction is set by the slowest elementary step (i.e., the rate- limiting step). Essential knowledge 4.C.3: reaction intermediates, which are formed during the reaction but not present in the overall reaction, play an important role in multistep reactions. 			
rate-limiting step	A. A reaction			
sets the rate of	intermediate is			
the overall	produced by some			
reaction.	elementary steps and			

		Curriculum Guide		
Reaction	consumed by others,			
intermediates,	such that it is present			
which are formed	only while a reaction is			
by a step in the	occurring.			
reaction	B. Experimental detection			
mechanism and	of a reaction			
then consumed	intermediate is a			
by a following	common way to build			
step, play an	evidence in support of		Teacher prepared,	
important role in	one reaction		Tro. A Molecular	
multistep	mechanism over an		Approach, 3 rd Edition,	
reactions, and	alternative mechanism.		textbook chapter 13	
their	XX Collection of data			
experimental	pertaining to 4.C.3b is beyond			
detection is an	the scope of this course and			
important means	the AP Exam.			
of investigating	Rationale: Designing an			
reaction	experiment to identify reaction			
mechanisms.	intermediates often requires			
	knowledge that is beyond the			
	scope of a general chemistry			
	course.			
	Essential knowledge 4.D.1:			
	Catalysts function by lowering			
	the activation energy of an			
	elementary step in a reaction			
	mechanism, and by providing a		Teacher prepared,	
Fredering	new and faster reaction		Tro. A Molecular	
Enduring	mechanism.	Learning Objective for EK	Approach, 3 rd Edition,	
understanding 4.D: Reaction	A. A catalyst can stabilize	4.D.1:	textbook chapter 13	
	A. A catalyst call stabilize		l	

		Curriculum Guide		
rates may be	a transition state,	LO 4.8 The student can		
increased by the	lowering the activation	translate among reaction		
presence of a	energy and thus	energy profile		
catalyst.	increasing the rate of a	representations, particulate		
Catalysts, such as	reaction.	representations, and		
enzymes in	B. A catalyst can increase	symbolic representations		
biological	a reaction rate by	(chemical equations) of a		
systems and the	participating in the	chemical reaction occurring		
surfaces in an	formation of a new	in the presence and absence		
automobile's	reaction intermediate,	of a catalyst.		
catalytic	thereby providing a			
converter,	new reaction pathway			
increase the rate	or mechanism.			
of a chemical				
reaction.	Essential knowledge 4.D.2:			
Catalysts may	important classes in catalysis			
function by	include acid-base catalysis,			
lowering the	surface catalysis, and enzyme			
activation energy	catalysis.	Learning Objective for EK		
of an elementary		4.D.2:		
, step in a	A. In acid-base catalysis, a	LO 4.9 The student is able to		
reaction, thereby	reactant either gains or	explain changes in reaction		
increasing the	loses a proton; this	rates arising from the use of		
rate of that	changes the rate of the	acid-base catalysts, surface		
elementary step,	reaction.	catalysts, or enzyme		
but leaving the	B. In surface catalysis,	catalysts, including selecting		
mechanism of	either a new reaction	appropriate mechanisms		
the reaction	intermediate is formed,	with or without the catalyst		
otherwise	or the probability of	present.		
unchanged.	successful collisions is			
Other catalysts	modified.			
participate in the	C. Some enzymes			
formation of a	accelerate reactions by			

		Curriculum Guide		
new reaction	binding to the			
intermediate,	reactants in a way that			
thereby	lowers the activation			
providing a new	energy. Other enzymes			
reaction	react with reactant			
mechanism that	species to form a new			
provides a faster	reaction intermediate.			
pathway				
between				
reactants and				
products.				

Curriculum Guide					
General Topic	AP Standards	Learning Objective, Skills & Vocabulary	Resources & Activities	Assessments	Suggested Time (In Days)
Enduring Understanding: Big Idea 5: The laws of thermodynamics describe the Essential role of energy and explain and predict the direction of changes in matter. All changes in matter involve some form of energy change. Thus, the availability or disposition of energy plays a role in virtually all observed chemical processes. Thermodynamics provides a number of tools for	Essential knowledge 5.A.1: temperature is a measure of the average kinetic energy of atoms and molecules. A. All of the molecules in a sample are in motion. B. The Kelvin temperature of a sample of matter is proportional to the average kinetic energy of the particles in the sample. When the average kinetic energy of the particles in the sample doubles, the Kelvin temperature is doubled. As the temperature approaches 0 K (zero Kelvin), the average kinetic energy of a system approaches a minimum near zero. C. The Maxwell- Boltzmann distribution shows that the distribution of kinetic energies becomes greater (more disperse) as temperature	Learning Objective for Big Idea 5: LO 5.1 The student is able to create or use graphical representations in order to connect the dependence of potential energy to the distance between atoms and factors, such as bond order (for covalent interactions) and polarity (for intermolecular interactions), which influence the interaction strength. Note: This learning objective applies to Essential knowledge components of 5A–5E. Learning Objective for EK 5.A.1: LO 5.2 The student is able to relate temperature to the motions of particles, either via particulate representations, such as	Teacher prepared, Tro. A Molecular Approach, 3 rd Edition, textbook chapter 6 Teacher prepared, Tro. A Molecular Approach, 3 rd Edition, textbook chapter 6	Teacher prepared	See Year-at- a-glance

		Curriculum Guide		
understanding	increases.	drawings of particles with		
this key role,		arrows indicating velocities,		
particularly the		and/or via representations		
conservation of		of average kinetic energy		
energy, including		and distribution of kinetic		
energy transfer		energies of the particles,		
in the forms of		such as plots of the		
heat and work.		Maxwell-Boltzmann		
Chemical		distribution.		
bonding is				
central to				
chemistry, so one		Learning Objective for EK	Teacher prepared,	
key concept	Essential knowledge 5.A.2: the process of kinetic energy	5.A.2:	Tro. A Molecular	
associated with	transfer at the particulate scale	LO 5.3 The student can	Approach, 3 rd Edition,	
energy is that the	is referred to in this course as		textbook chapter 6	
breaking of a	heat transfer, and the	generate explanations or make predictions about the		
chemical bond	spontaneous direction of the	transfer of thermal energy		
inherently	transfer is always from a hot to	between systems based on		
requires an	a cold body.	this transfer being due to a		
energy input, and	A. On average, molecules	kinetic energy transfer		
because bond	in the warmer body	between systems arising		
formation is the	have more kinetic	from molecular collisions.		
reverse process,	energy than the			
it will release	molecules in the cooler	Vocabulary for Big Idea 5:		
energy. One key	body.	bond length		
determinant of	B. Collisions of molecules	calorimetry		
chemical	that are in thermal			
transformations	contact transfer	chemical change		
is the change in	energy.	enthalpy change (∆H)		
potential energy	C. Scientists describe this	entropy		
that results from	process as "energy is	first law of thermodynamics		
changes in	transferred as heat."	Gibbs free energy		
electrostatic	D. Eventually, thermal	heating / cooling curve		

Curriculum Guide

		Curriculum Guide			
forces. In	equilibrium is reached	heat transfer			
addition to the	as the molecular	Hess's law			
transfer of	collisions continue.	physical change			
energy, the	The average kinetic	second law of			
thermodynamic	energy of both	thermodynamics			
concept of	substances is the same	temperature			
entropy is an	at thermal equilibrium.	work			
important	E. Heat is not a substance,				
component in	i.e., it makes no sense				
determining the	to say that an object				
direction of	contains a certain				
chemical or	amount of heat.				
physical change.	Rather, "heat				
	exchange" or "transfer				
	of energy as heat"				
Enduring	refers to the process in				
understanding	which energy is				
5.A: Two systems	transferred from a hot				
with different	to a cold body in				
temperatures	thermal contact.				
that are in	The transfer of a given amount				
thermal contact	of thermal energy will not				
will exchange	produce the same temperature				
energy. The	change in equal masses of				
quantity of	matter with differing specific				
thermal energy	heat capacities.				
transferred from					
one system to					
another is called					
heat.					
The particles in					
chemical systems					
are continually					
· · · /			I	1	l di

AP Chemistry

Curriculum Guide

		curriculuiti Guiuc		
undergoing				
random motion.				
The temperature				
of a system is a				
direct measure of				
the average				
kinetic energy				
associated with				
this random				
motion. When				
chemical systems				
that have				
different				
temperatures are				
placed in thermal				
contact, kinetic				
energy is				
transferred from				
the hotter object				
to the cooler				
object until the				
temperatures				
become equal.				
This transfer of				
kinetic energy is				
referred to in this				
course as heat				
transfer. An				
understanding of				
heat as the				
transfer of				
energy between				
a system at				
	<u> </u>			

		Curriculum Guide		
higher				
temperature and				
a system at lower				
temperature is				
fundamental.				
Many practical				
applications				
exist, such as				
weather				
prediction,				
design of heating			Teacher prepared,	
and cooling			Tro. A Molecular	
systems, and			Approach, 3 rd Edition,	
regulation of the			textbook chapter 6	
rates of chemical	Essential knowledge 5.B.1:	Learning Objectives for EK		
reactions.	energy is transferred between	5.B.1 and 5.B.2:		
	systems either through heat	LO 5.4 The student is able to		
	transfer or through one system	use conservation of energy		
Enduring	doing work on the other	to relate the magnitudes of		
understanding	system.	the energy changes		
5.B: Energy is	A. Heating a cold body	occurring in two or more		
neither created	with a hot body is a	interacting systems,		
nor destroyed,	form of energy transfer	including identification of		
but only	between two systems.	the systems, the type (heat		
transformed	The transfer of thermal	versus work), or the		
from one form to	energy is an important	direction of energy flow.		
another.	concept in			
The conservation	thermodynamics.	LO 5.5 The student is able to		
of energy plays	B. An additional form of	use conservation of energy to relate the magnitudes of		
an important role	energy transfer is	the energy changes when		
in reasoning	through work. Work is	two non-reacting substances		
about the	described by other	are mixed or brought into		
transfer of	scientific frameworks,			

AP Chemistry

		Curriculum Guide			
energy in	such as Newtonian	contact with one another.			
chemical	Mechanics or				
systems. A	electromagnetism.				
molecular system	C. In this course,				
has energy that is	calculations involving				
a function of its	work are limited to that				
current state.	associated with				
The energy of a	changes in volume of a				
system changes	gas. An example of the				
when the state of	transfer of energy				
the system	between systems				
changes; for	through work is the				
instance, when	expansion of gas in a				
the temperature	steam engine or car				
of the system	piston. Reasoning				
changes, when a	about this energy				
substance melts	transfer can be based				
or boils, or when	on molecular collisions				
a chemical	with the piston:				
reaction occurs,	The gas is doing work				
the energy	on the piston, and energy is				
changes.	transferred from the gas to the				
Conservation of	piston.				
energy implies	Essential knowledge 5.B.2:				
that any change	When two systems are in				
in the energy of a	contact with each other and				
system must be	are otherwise isolated, the				
balanced by the	energy that comes out of one				
transfer of	system is equal to the energy				
energy either	that goes into the other				
into or out of the	system. the combined energy				
system. This	of the two systems remains				
energy transfer	fixed. energy transfer can occur				
			<u> </u>	l	

AP Chemistry

		Curriculum Guide		
can take the	through either heat exchange			
form of either	or work.			
form of either heat transfer or work. Work includes all forms of energy transfer other than heat transfer. Examples of mechanical work include the expansion of a gas against a piston in engines. The change in energy associated with a chemical process is an important aspect of such processes characterizing, for instance, the amount of energy that can be obtained from a fuel system.	or work. A. When energy is transferred from system 1 to system 2, the energy transferred from system 1 is equal in magnitude to the energy transferred to system 2. B. If a system transfers energy to another system, its energy must decrease. Likewise, if energy is transferred into a system, its energy must increase. Essential knowledge 5.B.3: Chemical systems undergo three main processes that change their energy: heating/cooling, phase transitions, and chemical reactions. A. Heating a system increases the energy of	Learning Objective for EK 5.B.3: LO 5.6 The student is able to use calculations or estimations to relate energy changes associated with heating/cooling a substance to the heat capacity, relate energy changes associated	Teacher prepared, Tro. <i>A Molecular</i> <i>Approach, 3rd Edition,</i> textbook chapter 6	
Because the change in energy associated with a given process is proportional to	the system, while cooling a system decreases the energy. A liter of water at 50°C has more energy than a	with a phase transition to the enthalpy of fusion/ vaporization, relate energy changes associated with a chemical reaction to the		

		Curriculum Guide			
the amount of	liter of water at 25°C.	enthalpy of the reaction,			
substance	B. The amount of energy	and relate energy changes			
undergoing that	needed to heat one	to P∆V work.			
process, this	gram of a substance by				
change is best	1°C is the specific heat				
described on a	capacity of that				
per mole (or per	substance.				
gram) basis, as in	C. Energy must be				
heat capacities	transferred to a system	1			
(for	to cause it to melt (or				
heating/cooling),	boil). The energy of the				
enthalpies of	system therefore				
fusion or	increases as the systen	1			
vaporization (for	undergoes a solid-				
physical	liquid (or liquid-gas)				
transformations),	phase transition.				
and enthalpies of	Likewise, a system				
reaction (for	gives off energy when				
chemical	it freezes (or				
transformations).	condenses). The energ	/			
Calorimetry	of the system				
provides a	decreases as the				
convenient	system undergoes a				
means to	liquid-solid (or gas-				
measure changes	liquid) phase transitior				
in energy, and	D. The amount of energy				
thus is used	needed to vaporize on	2			
experimentally to	mole of a pure				
determine heat	substance is the molar				
capacities or	enthalpy of				
enthalpies of	vaporization, and the				
physical and	energy released in				
chemical	condensation has an				
L		1	<u> </u>	1 1	

		Curriculum Guide	
transformations.	equal magnitude. The		
	molar enthalpy of		
	fusion is the energy		
	absorbed when one		
	mole of a pure solid		
	melts or changes from		
	the solid to liquid state		
	and the energy		
	released when the		
	liquid solidifies has an		
	equal magnitude.		
	E. When a chemical		
	reaction occurs, the		
	energy of the system		
	decreases (exothermic		
	reaction), increases		
	(endothermic reaction),		
	or remains the same.		
	For exothermic		
	reactions, the energy		
	lost by the reacting		
	molecules (system) is		
	gained by the		
	surroundings. The		
	energy is transferred to		
	the surroundings by		
	either heat or work.		
	Likewise, for	Teacher areas	
	endothermic reactions,	Teacher prepared, Tro. <i>A Molecular</i>	
	the system gains	Approach, 3 rd Edition,	
	energy from the	textbook chapter 6	
	surroundings by heat		
	transfer or work done		
L			

	Curriculum Guide		
 on the system. F. The enthalpy change of reaction gives the amount of energy released (for negative values) or absorbed (for positive values) by a chemical reaction at constant pressure. Essential knowledge 5.B.4: Calorimetry is an experimental technique that is used to determine the heat exchanged/transferred in a chemical system. A. The experimental setup for calorimetry is the following: A chemical system is put in thermal contact with a heat bath. The heat bath is a substance, such as water, whose heat capacity has been well established by previous experiments. A process is initiated in the chemical system (heating/cooling, phase transition, or chemical reaction), and the change in temperature of the heat bath is a 	Learning Objective for EK 5.B.4: LO 5.7 The student is able to design and/or interpret the results of an experiment in which calorimetry is used to determine the change in enthalpy of a chemical process (heating/cooling, phase transition, or chemical reaction) at constant pressure.		

		Curriculum Guide		
	determined.			
B.	Because the heat			
	capacity of the heat			
	bath is known, the			
	observed change in			
	temperature can be			
	used to determine the			
	amount of energy			
	exchanged between			
	the system and the			
	heat bath.			
C.	The energy exchanged			
	between the system			
	and the heat bath is			
	equal in magnitude to			
	the change in energy of			
	the system. If the heat			
	bath increased in			
	temperature, its energy			
	increased, and the			
	energy of the system			
	decreased by this			
	amount. If the heat			
	bath decreased in			
	temperature, and			
	therefore energy, the			
	energy of the system			
	increased by this			
	amount.			
D.	Because calorimetry			
	measures the change in			
	energy of a system, it			
	can be used to			
L				

		Curriculum Guide	 	
	determine the heat			
	associated with each of			
	the processes listed in			
	5.B.3. In this manner,			
	calorimetry may be			
	used to determine heat			
	capacities, enthalpies			
	of vaporization,			
	enthalpies of fusion,			
	and enthalpies of			
	reactions. Only			
	constant pressure			
Enduring	calorimetry is required			
understanding	in the course.			
5.C: Breaking				
bonds requires	Essential knowledge 5.C.1:			
energy, and	Potential energy is associated			
making bonds	with a particular geometric			
releases energy.	arrangement of atoms or ions			
Chemical bonds	and the electrostatic			
arise from	interactions between them.			
attractive				
interactions	A. The attraction between			
between	the electrons of one			
negatively	atom and the protons			
charged	of another explains the			
electrons and the	tendency for the atoms			
positively	to approach one			
charged nuclei of	another. The repulsion			
the atoms that	between the nuclei (or			
make up the	core electrons) explains			
bond. As	why the atoms repel			
JUIIU. AS	one another at close			
L	1		1	

			Curriculum Guide			
electrons		distance. The distance				
approach a		at which the energy of				
positive charge,		interaction is				
the potential		minimized is called the				
energy of a		bond length, and the				
system is		atoms vibrate about				
lowered.		this minimum energy				
Therefore, having		position.				
electrons shared	В.	A graph of energy				
between atoms		versus the distance				
results in the		between atoms can be				
system being in a		plotted and				
lower energy		interpreted. Using this				
state, which can		graph, it is possible to				
only happen if		identify bond length				
energy is		and bond energy.				
somehow	C.	Conceptually, bond				
released. Thus,		making and bond				
making chemical		breaking are opposing				
bonds releases		processes that have the				
energy. The		same magnitude of		Teacher prepared,		
converse is true		energy associated with		Tro. A Molecular		
for the opposing		them. Thus, convention		Approach, 3 rd Edition,		
process. In order		becomes important, so		textbook chapter 6		
to break a		we define the bond				
chemical bond,		energy as the energy				
energy must be		required to break a				
put into the		bond.				
system to	D.	Because chemical				
overcome the		bonding arises from				
attractive		electrostatic				
interaction		interaction between				
between the		electrons and nuclei,				
				1	1	1

		Curriculum Guide		
shared electrons	larger charges tend to			
and the nuclei of	lead to larger strengths			
the bonded	of interaction. Thus,			
atoms. When	triple bonds are			
considering	stronger than double			
chemical	or single bonds			
reactions,	because they share			
however, it is	more pairs of electrons.	Learning Objective for		
important to	E. Stronger bonds tend to	Learning Objective for 5.C.2:		
recognize that in	be shorter bonds.	5.C.2.		
most cases both		LO 5.8 The student is able to		
bond breaking	Essential knowledge 5.C.2:	draw qualitative and		
and bond	the net energy change during a	quantitative connections		
formation occurs.	reaction is the sum of the	between the reaction		
The overall	energy required to break the	enthalpy and the energies		
energy change is	bonds in the reactant	involved in the breaking and		
determinable	molecules and the energy	formation of chemical		
from looking at	released in forming the bonds	bonds.		
all the energy	of the product molecules. the			
inputs (to break	net change in energy may be			
bonds) and the	positive for endothermic			
energy outputs	reactions where energy is			
(from the	required, or negative for			
formation of	exothermic reactions where			
bonds). There are	energy is released.			
several ways to calculate energy	A During a shomical			
changes for	A. During a chemical			
reactions,	reaction, bonds are broken and/or formed,			
including	and these events			
traditionally used	change the potential			
methods	energy of the reaction			
involving	system.			
	System.			

			Curriculum Guide	•	
enthalpy of	В.	The average energy			
formation. One		required to break all of			
compelling		the bonds in the			
conceptual		reactant molecules can			
model for this		be estimated by adding			
calculation is to		up the average bond			
use average bond		energies or bond			
energies or		enthalpies for all the			
enthalpies to		bonds in the reactant			
determine the		molecules. Likewise,			
energy change of		the average energy			
a reaction. Many		released in forming the			
practical		bonds in the products			
examples of		can be estimated. If the			
chemistry take		energy released is			
place in solvents		greater than the energy			
(often water);		required, then the			
thus, the		reaction is exothermic.			
determination of		If the energy required			
overall changes		is greater than the			
in energy for a		energy released, then			
reaction must		the reaction is			
include		endothermic.			
consideration of	C.	For an exothermic			
any solvent		reaction, the products			
interactions with		are at a lower potential			
reactants and		energy compared with			
products. Energy		the reactants. For an			
may appear in		endothermic reaction,			
different forms,		the products are at a			
such as potential		higher potential energy			
energy or kinetic		than the reactants.			
energy. In	D.	In an isolated system,			

		Curriculum Guide		
chemical	energy is conserved.			
systems, the	Thus, if the potential			
stored energy is	energy of the products			
called chemical	is lower than that of			
energy, and the	the reactants, then the			
energy of motion	kinetic energy of the			
(translational,	products must be			
rotational, or	higher. For an			
vibrational) is	exothermic reaction,			
called thermal	the products are at a			
energy. Chemical	higher kinetic energy.			
energy is the	This means that they			
potential energy	are at a higher			
associated with	temperature. Likewise,			
chemical	for an endothermic			
systems. The	reaction, the products			
amount of	are at a lower kinetic			
chemical energy	energy and, thus, at a			
in a system	lower temperature.			
changes when	E. Because the products			
the chemicals are	of a reaction are at a			
allowed to react.	higher or lower			
The energy	temperature than their			
transferred to or	surroundings, the			
from the	products of the			
surroundings	reaction move toward			
when a chemical	thermal equilibrium			
system	with the surroundings.			
undergoes a	Thermal energy is			
reaction is often	transferred to the			
in the form of	surroundings from the			
thermal energy.	hot products in an			
	exothermic reaction.			
1	1		1	

			Curriculum Guide		
		Thermal energy is			
		transferred from the			
		surroundings to the			
		cold products in an			
		endothermic reaction.			
	F.	Although the concept			
		of "state functions" is			
		not required for the			
		course, students should			
		understand these		Teacher prepared,	
		Hess's law ideas: When		Tro. A Molecular	
		a reaction is reversed,		Approach, 3 rd Edition,	
		the sign of the enthalpy		textbook chapters 11	
		of the reaction is		and 12	
		changed; when two (or			
		more) reactions are			
		summed to obtain an			
		overall reaction, the			
		enthalpies of reaction			
		are summed to obtain			
		the net enthalpy of			
		reaction.			
	G.	Tables of standard			
		enthalpies of formation			
		can be used to			
		calculate the standard			
		enthalpy of reactions.			
		Uses should go beyond			
		algorithmic calculations			
		and include, for			
		instance, the use of			
		such tables to compare			
		related reactions, such			
L					

		Curriculum Guide		
	as extraction of	Learning Objective for		
	elemental metals from	5.D.1:		
Enduring understanding 5.D: Electrostatic forces exist between molecules as well as between atoms or ions, and breaking the resultant intermolecular interactions requires energy. The same Essential interaction that forms chemical bonds, electrostatic attraction, also explains the attractive forces as non-bonded atoms draw near each other. When atoms approach each other, there is always an electrostatic	metal oxides. Essential knowledge 5.D.1: Potential energy is associated with the interaction of molecules; as molecules draw near each other, they experience an attractive force. A. Chemists categorize intermolecular forces in terms of the nature of the charge distributions in the molecules involved. Thus, dipole-dipole, dipole-induced dipole, and induced dipole (dispersion) can be defined. B. All substances will manifest dispersion forces, and these forces tend to be larger when the molecules involved have more electrons or have a larger surface area. C. Hydrogen bonding is a	LO 5.9 The student is able to make claims and/or predictions regarding relative magnitudes of the forces acting within collections of interacting molecules based on the distribution of electrons within the molecules and the types of intermolecular forces through which the molecules interact.	Teacher prepared, Tro. A Molecular Approach, 3 rd Edition, textbook chapters 11 and 12	

		Curriculum Guide		
attraction	relatively strong type of			
between the	intermolecular			
positive charges	interaction that occurs			
of the nucleus in	when hydrogen atoms			
each atom and	that are covalently			
the electrons of	bonded to the highly			
the approaching	electronegative atoms			
atom. When a	(N, O, and F) are also			
chemical bond	attracted to the			
does not form	negative end of a			
between the two	dipole formed by the			
atoms, this	electronegative atom			
attraction is	(N, O, and F) in a			
described as an	different molecule, or a			
intermolecular	different part of the			
force. For	same molecule. When			
molecular	hydrogen bonding is			
systems, these	present, even small	Learning Objective for EK		
intermolecular	molecules may have	5.D.2:		
forces are	strong intermolecular	LO 5.10 The student can		
understood in	attractions.	support the claim about		
terms of charge distributions leading to dipoles (permanent or induced) that then attract each other. The most common categories for these interactions are (a) dipole-dipole,	Essential knowledge 5.D.2: At the particulate scale, chemical processes can be distinguished from physical processes because chemical bonds can be distinguished from intermolecular interactions. A. The distinction between chemical and physical processes relates to the nature of the change in	whether a process is a chemical or physical change (or may be classified as both) based on whether the process involves changes in intra-molecular versus inter- molecular interactions.	Teacher prepared, Tro. <i>A Molecular</i> <i>Approach, 3rd Edition,</i> textbook chapters 9, 10, 11, and 12	

			Curriculum Guide		
(b) dipole-		molecular interactions.			
induced dipole,		Processes that involve			
and (c) induced		the breaking and/or			
dipole-induced		formation of chemical			
dipole		bonds are classified as			
(dispersion)		chemical processes.			
forces. Hydrogen		Processes that involve			
bonding is an		only changes in weak			
important,		intermolecular			
specialized form		interactions, such as			
of dipole-dipole		phase changes, are			
interactions.		classified as physical			
These fores may		processes.			
These forces may	В.	A gray area exists			
occur (a)		between these two			
between small		extremes. For instance,			
molecules, (b)		the dissolution of a salt			
between		in water involves			
different large		breaking of ionic bonds			
molecules, or (c)		and the formation of			
between		interactions between			
different regions		ions and solvent. The			
of the same large molecule. The		magnitude of these			
distinction at the		interactions can be			
		comparable to covalent			
particulate level between		bond strengths, and so			
		plausible arguments			
electrostatic interactions of		can be made for			
non-bonded		classifying dissolution		Tooshan museus d	
atoms and those		of a salt as either a		Teacher prepared, Tro. <i>A Molecular</i>	
of chemically		physical or chemical		Approach, 3 rd Edition,	
bonded atoms		process.		textbook chapter 17	
provides the					
provides the					

cleanestEssential knowleddistinctionNon-covalent andbetween aintermolecular interchemical andplay important role	5.D.3: Eractions LO 5.11 The student is able to identify the non-covalent	
between a intermolecular inter chemical and play important role	to identify the non-covalent	
chemical and play important role	LO 5.11 The student is able to identify the non-covalent	
1 / 1	to identify the non-covalent	
	mer	
physical process. biological and poly	Interactions within and	
A physical systems.	between large molecules,	
process generally A. In large bio		
Involves non-	· · ·	
bonded	s may occur molecule to the presence	
interactions, and between c		
a chemical molecules	or between interactions.	
process involves different r	egions of the	
breaking and/or same large	-	
forming covalent biomolecu	le.	
bonds. In many systems involving B. The function	onality and	
large molecules properties	of molecules	
(both depend st	ongly on the	
biochemical shape of t	ne molecule,	
systems and which is la		
synthetic dictated b		
covalent ir	teractions.	
systems) the For examp	-	
non-bonded	enzymes is	
interactions play dictated b		
important roles proportion	of synthetic	
In the observed	re modified	
TUNCTIONS OF THE	lating their	
systems	omposition	
Enduring and struct	•	
understanding		
5.E: Chemical or Essential knowled	ge 5.E.1:	
physical entropy is a measu		

			Curriculum Guide		
processes are	dispers	sal of matter and energy.	5.E.1:		
driven by a	^	Entropy may be	LO 5.12 The student is able		
decrease in	А.	understood in	to use representations and		
enthalpy or an		qualitative terms rather	models to predict the sign		
increase in		than formal statistical			
entropy, or both.			and relative magnitude of		
One of the most		terms. Although this is	the entropy change associated with chemical or		
		not the most rigorous			
powerful		approach to entropy,	physical processes.		
applications of		the use of qualitative			
thermodynamic		reasoning emphasizes			
principles is the		that the goal is for			
ability to		students to be able to			
determine		make predictions about			
whether a		the direction of			
process		entropy change, ΔS° ,			
corresponding to		for many typical			
a physical or		chemical and physical			
chemical change		processes.			
will lie toward	В.	Entropy increases			
the reactant or		when matter is			
product side		dispersed. The phase			
when the process		change from solid to			
reaches a steady		liquid, or from liquid to			
equilibrium state.		gas, results in a			
The standard		dispersal of matter in			
change in Gibbs		the sense that the			
free energy, ∆G°		individual particles			
$= \Delta H^{\circ} - T\Delta S^{\circ}$, is		become more free to			
used to make this		move, and generally		Teacher prepared,	
determination. If		occupy a larger		Tro. A Molecular	
$\Delta G^{\circ} < 0$, then		volume. Another way		Approach, 3 rd Edition,	
products are		in which entropy		textbook chapter 17	
favored at		increases in this			

		Curriculum Guide		
equilibrium, and	context is when the			
the forward	number of individual			
process is	particles increases			
considered to be	when a chemical			
"thermodynamic	reaction precedes			
ally favored."	whose stoichiometry			
Conversely, if	results in a larger			
$\Delta G^{\circ} > 0$, then	number of product			
reactants are	species than reacting			
favored at	species. Also, for a gas,			
equilibrium, and	the entropy increases			
the reverse	when there is an			
process is	increase in volume (at			
considered to be	constant temperature),			
"thermodynamic	and the gas molecules			
ally favored."	are able to move within			
Both the	a larger space.			
enthalpy change	C. Entropy increases			
(∆H°) and the	when energy is			
entropy change	dispersed. From KMT,			
(∆S°) are closely	we know that the			
related to the	distribution of kinetic			
structure and	energy among the			
nature of the	particles of a gas			
components of	broadens as the			
the system; for	temperature increases.			
this reason, it is	This is an increase in			
often possible to	the dispersal of energy,			
make qualitative	as the total kinetic			
determinations	energy of the system			
concerning the	becomes spread more			
sign (and	broadly among all of			
magnitude) of	the gas molecules.			

		Curriculum Guide		
∆G° without	Thus, as temperature			
explicit	increases, the entropy			
calculation.	increases.			
Enthalpy changes				
are closely	Essential knowledge 5.E.2:	Learning Objective for FK		
related to the	some physical or chemical	Learning Objective for EK		
relative bond	processes involve both a	5.E.2:		
energies (and	decrease in the internal energy	LO 5.13 The student is able		
relative strengths	of the components (ΔH° < 0)	to predict whether or not a		
of intermolecular	under consideration and an	physical or chemical process		
interactions) of	increase in the entropy of those	is thermodynamically		
the reactants and	components ($\Delta S^{\circ} > 0$). these	favored by determination of		
products;	processes are necessarily	(either quantitatively or		
entropy changes	"thermodynamically favored"	qualitatively) the signs of		
are generally	(∆G° < 0).	both ΔH° and ΔS° , and		
related to the	A. For the purposes of	calculation or estimation of		
states of the	thermodynamic	ΔG° when needed.		
components and	analysis in this course,			
the number of	the enthalpy and the			
individual	internal energy will not			
particles present.	be distinguished.			
In this way, the	B. The phrase			
Gibbs free energy	"thermodynamically			
provides a	favored" means that			
framework based	products are favored at			
on molecular	equilibrium ($K > 1$).			
structure and	C. Historically, the term			
intermolecular	"spontaneous" has			
interactions for	been used to describe			
understanding	processes for which			
why some	$\Delta G^{\circ} < 0$. The phrase			
chemical	"thermodynamically			
reactions are	favored" is used here			
L		l		

observed to	to avoid		
proceed to near	misunderstanding and		
completion,	confusion that can		
while others	occur because of the		
reach equilibrium	common connotation		
with almost no	of the term	Teacher prepared, Tro. <i>A Molecular</i>	
products being	"spontaneous," which	Approach, 3 rd Edition,	
formed. Some	students may believe	textbook chapter 17	
processes that	means "immediately"		
are not	or "without cause."		
thermodynamical	D. For many processes,		
ly favored (for	students will be able to		
example, the	determine, either		
recharging of a	quantitatively or		
battery) can be	qualitatively, the signs		
driven to occur	of both ΔH° and ΔS° for		
through the	a physical or chemical		
application of	process. In those cases		
energy from an	where $\Delta H^{\circ} < 0$ and ΔS°		
external source	> 0, there is no need to		
— in this case, an	calculate ΔG° in order		
electrical current.	to determine that the		
Importantly, in	process is		
biochemical	thermodynamically		
systems, some	favored.		
reactions that	E. As noted below in		
oppose the	5.E.5, the fact that a		
thermodynamical	process is		
ly favored	thermodynamically		
direction are	favored does not mean		
driven by	that it will proceed at a		
coupled	measurable rate.		
reactions. Thus, a	F. Any process in which		
L			

		Curriculum Guide		
cell can use	both $\Delta H^{\circ} > 0$ and $\Delta S^{\circ} <$			
energy to create	0 are not			
order (a direction	thermodynamically			
that is not	favored, (∆G° > 0) and		Teacher prepared,	
thermodynamical	the process must favor		Tro. A Molecular	
ly favored) via	reactants at		Approach, 3 rd Edition,	
coupling with	equilibrium (K < 1).		textbook chapter 17	
thermodynamical	Because the signs of			
ly favored	ΔS° and ΔH° reverse			
reactions. For	when a chemical or			
example, many	physical process is		Teacher prepared,	
biochemical	reversed, this must be		Tro. A Molecular	
syntheses are	the case.		Approach, 3 rd Edition,	
coupled to the			textbook chapter 14	
reaction in which	Essential knowledge 5.E.3: if a			
ATP is converted	chemical or physical process is	Learning Objective for EK		
to ADP +	not driven by both entropy and	5.E.3:		
phosphate.	enthalpy changes, then the		Teacher prepared,	
In some cases,	Gibbs free energy change can	LO 5.14 The student is able	Tro. A Molecular	
processes that	be used to determine whether	to determine whether a	Approach, 3 rd Edition,	
are	the process is	chemical or physical process	textbook chapter 14	
thermodynamical	thermodynamically favored.	is thermodynamically		
ly favored are not	A. Some exothermic	favorable by calculating the		
observed to	reactions involve	change in standard Gibbs		
occur because of	decreases in entropy.	free energy.		
some kinetic	B. When $\Delta G^{\circ} > 0$, the			
constraint; quite	process is not			
often there is a	thermodynamically			
high activation	favorable. When ΔG° <			
energy to	0, the process is			
overcome in	thermodynamically			
order for the	favorable.			
process to	C. In some reactions, it is			

		Curriculum Guide		
proceed. Thus,	necessary to consider			
although Gibbs	both enthalpy and			
free energy can	entropy to determine if			
be used to	a reaction will be			
determine which	thermodynamically			
direction of a	favorable. The freezing			
chemical process	of water and the			
is	dissolution of sodium			
thermodynamical	nitrate in water provide			
ly favored, it	good examples of such			
provides no	situations.			
information				
about the rate of	Essential knowledge 5.E.4:			
the process, or	external sources of energy can			
the nature of the	be used to drive change in	Learning Objectives for EK		
process on the	cases where the Gibbs free	5.E.4:		
microscopic	energy change is positive.	LO 5.15 The student is able		
scale.	A. Electricity may be used	to explain how the		
	to cause a process to	application of external		
	occur that is not	energy sources or the		
	thermodynamically	coupling of favorable with		
	favored. Useful	unfavorable reactions can		
	examples are charging	be used to cause processes		
	of a battery and the	that are not		
	process of electrolysis.	thermodynamically		
	B. Light may also be a	favorable to become		
	source of energy for	favorable.		
	driving a process that	LOF 16 The student conver		
	in isolation is not	LO 5.16 The student can use		
	thermodynamically	Le Chatelier's principle to		
	favored. Useful	make qualitative predictions for systems in which		
	examples are as	coupled reactions that share		
	follows:			
				I

	Curriculum Guide		
a. The photoionizatio n of an atom, because although the separation of a negatively charged electron from the remaining positively charged ion is highly endothermic, ionization is observed to occur in conjunction with the absorption of a photon. b. The overall conversion of carbon dioxide to glucose through photosynthesis , for which 6 $CO_2(g) + 6$ $H_2O(I) \rightarrow$ $C_6H_{12}O_6(aq) + 6$ $O_2(g) has \Delta G^\circ =$ +2880 kJ/	a common intermediate drive formation of a product. LO 5.17 The student can make quantitative predictions for systems involving coupled reactions that share a common intermediate, based on the equilibrium constant for the combined reaction.	Teacher prepared, Tro. A Molecular Approach, 3 rd Edition, textbook chapter 14	

	Curriculum Guide		
mol _{rxn} , yet is			
observed to			
occur through			
a multistep			
process that is			
initiated by the			
absorption of			
several			
photons in the			
range of 400–			
700 nm.			
C. A thermodynamically			
unfavorable reaction			
may be made favorable			
by coupling it to a			
favorable reaction,			
such as the conversion			
of ATP to ADP in			
biological systems. In			
this context, coupling			
means the process			
involves a series of			
reactions with common			
intermediates, such			
that the reactions add			
up to produce an			
overall reaction with a			
negative ∆G°.			
Essential knowledge 5.E.5:	Learning Objective for EK		
A thermodynamically favored	5.E.5:		
process may not occur due to	LO 5.18 The student can		
kinetic constraints (kinetic vs.	explain why a		
		l	

hermodynamic control). thermodynamically favored A. Many processes that chemical reaction may not are thermodynamically produce large amounts of favored do not occur at consideration of both initial or they occur at consideration of both initial extremely slow rates. B. B. Processes that are thermodynamically unfavored chemical reaction favored, but do not or produce large amounts proceed at a measurable rate, are said to be under "kinetic control." High activation energy is a common reason for a process to be under that a process does not process to korn to be thermodynamically favored (through qualitative analysis of AH ⁺ and AS ⁺), and yet it is not occurring at a measurable rate, then measurables of		Curriculum Guid	e	
are thermodynamically produce large amounts of favored do not occur to product (based on any measurable extent, consideration of both initial or they occur at extremely slow rates. B. Processes that are thermodynamically favored, but do not product large amounts proceed at a thermodynamically measurable rate, are said to be under "kinetic control." High activation energy is a common reason for a procees to be under kinetic control. The fact that a process does not process is known to be thermodynamically qualitative and/or qualitative and/or qualitative and/or qualitative and/or qualitative and/sis of At* and AS*), and yet it				
favored do not occur to any measurable extent, or they occur at extremely slow rates.product (based on consideration of both initial conditions and kinetic effects), or why a thermodynamically unfavored chemical reaction can produce large amounts of product for certain sets of initial conditions.B.Processes that are thermodynamically infavored to be under "kinetic control." High activation energy is a common reason for a proceed at a noticeable rate does not mean that a process does not proceed at a noticeable rate does not mean that the chemical system is at equilibrium. If a procees is known to be thermodynamically favored (through quantitative analysis of AH* and AS*), and yet it is not occurring at a				
any measurable extent, or they occur at extremely slow rates.consideration of both initial conditions and kinetic effects, or why a thermodynamically unfavored chemical reaction cap produce large amounts of product for certain sets of initial conditions.B. Processes that are thermodynamically favored, but do not proceed at a measurable rate, are said to be under "kinetic control." High activation energy is a common reason for a proceed at a noticeable rate does not mean that the chemical system is at equilibrium. If a process is known to be thermodynamically favored (through qualitative and/or qualitative and/or qualitative and/or qualitative and/orconsideration of both initial conditions and kinetic effects, or why a thermodynamically activation energy is a common reason for a process to be underWinetic control. The fact that a process is known to be thermodynamically favored (through qualitative and/or qualitative and/or qualitative and/or qualitative and/orenergi a thermodynamically favored (through qualitative and/or qualitative and/or qualitative and/or	are thermo	, , ,		
a or they occur at extremely slow rates. conditions and kinetic effects), or why a thermodynamically favored, but do not proceed at a measurable rate, are said to be under "kinetic control." High activation energy is a common reason for a process to be under kinetic control. The fact that a process does not proceed at a noticeable rate does not mean that the chemical system is at equilibrium. If a process is known to be thermodynamically favored (through qualitative and/yor quantitative analysis of ΔH ^a and ΔS ^b), and yet it is not occurring at a conditions and kinetic effects), or why a thermodynamically unfavored chemical reaction can produce large amounts of product for certain sets of initial conditions.	favored do			
extremely slow rates. B. Processes that are thermodynamically favored, but do not proceed at a measurable rate, are said to be under "kinetic control." High activation energy is a common reason for a process to be under kinetic control. The fact that a process does not proceed at a noticeable rate does not mean that the chemical system is at equilibrium. If a process is known to be thermodynamically favored (through qualitative analysis of AH ^a and AS ^a), and yet it is not occurring at a	any measu			
B. Process that are thermodynamically favored, but do not proceed at a measurable rate, are said to be under "kinetic control." High activation energy is a common reason for a process to be under kinetic control. The fact that a process does not proceed at a noticeable rate does not mean that the chemical system is at equilibrium. If a process is known to be thermodynamically favored (through qualitative analysis of AM ⁴ and ΔS ⁵), and yet it is not occurring at a	or they occ	Jur al		
 b. Processes that are unfavored chemical reaction can produce large amounts of protect at a measurable rate, are said to be under "kinetic control." High activation energy is a common reason for a process to be under kinetic control. The fact that a process does not proceed at a noticeable rate does not mean that the chemical system is at equilibrium. If a process is known to be thermodynamically favored (through qualitative and/or quantitative analysis of AdH* and AS*), and yet it is not occurring at a 	extremely	SIOW LATES		
thermodynamically can produce large amounts favored, but do not of product for certain sets of proceed at a initial conditions. measurable rate, are said to be under "Kinetic control." High activation energy is a common reason for a process to be under kinetic control. The fact that a process does not proceed at a noticeable rate does not mean that the chemical system is at equilibrium. If a process is known to be thermodynamically favored (through qualitative and/or qualitative and/or qualitative and/sis of AH ^a and ΔS ^c), and yet it is not occurring at a equilibrium at a	B. Processes t			
favored, but do not proceed at a measurable rate, are said to be under "kinetic control." High activation energy is a common reason for a process to be under kinetic control. The fact that a process does not proceed at a noticeable rate does not mean that the chemical system is at equilibrium. If a process is known to be thermodynamically favored (through qualitative analysis of ΔH^a and ΔS^a), and yet it is not occurring at aof product for certain sets of initial conditions.	thermodyn	amically		
proceed at a measurable rate, are said to be under "kinetic control." High activation energy is a common reason for a process to be under kinetic control. The fact that a process does not proceed at a noticeable rate does not mean that the chemical system is at equilibrium. If a process is known to be thermodynamically favored (through qualitative analysis of AH° and AS°), and yet it is not occurring at ainitial conditions.	favored, bu	it do not	f	
said to be under "kinetic control." High activation energy is a common reason for a process to be under kinetic control. The fact that a process does not proceed at a noticeable rate does not mean that the chemical system is at equilibrium. If a process is known to be thermodynamically favored (through qualitative analysis of Δ H° and Δ S°), and yet it is not occurring at a	proceed at			
"kinetic control." High activation energy is a common reason for a process to be under kinetic control. The fact that a process does not proceed at a noticeable rate does not mean that the chemical system is at equilibrium. If a process is known to be thermodynamically favored (through qualitative and/or quantitative analysis of ΔH° and ΔS°), and yet it is not occurring at aImage: State of the	measurable	e rate, are		
activation energy is a common reason for a process to be under kinetic control. The fact that a process does not proceed at a noticeable rate does not mean that the chemical system is at equilibrium. If a process is known to be thermodynamically favored (through qualitative and/or quantitative analysis of Δ H° and Δ S°), and yet it is not occurring at a	said to be u	under		
common reason for a process to be under kinetic control. The fact that a process does not proceed at a noticeable rate does not mean that the chemical system is at equilibrium. If a process is known to be thermodynamically favored (through qualitative and/or quantitative analysis of ΔH° and ΔS°), and yet it is not occurring at a	"kinetic co	ntrol." High		
process to be underkinetic control. The factthat a process does notproceed at a noticeablerate does not meanthat the chemicalsystem is atequilibrium. If aprocess is known to bethermodynamicallyfavored (throughqualitative and/orquantitative analysis ofΔH° and ΔS°), and yet itis not occurring at a	activation	energy is a		
kinetic control. The fact that a process does not proceed at a noticeable rate does not mean that the chemical system is at equilibrium. If a process is known to be thermodynamically favored (through qualitative and/or quantitative analysis of ΔH° and ΔS°), and yet it is not occurring at a	common re	eason for a		
that a process does not proceed at a noticeable rate does not mean that the chemical system is at equilibrium. If a process is known to be thermodynamically favored (through qualitative analysis of ΔH° and ΔS°), and yet it is not occurring at aImage: Comparison of the system of the	process to	be under		
proceed at a noticeable rate does not mean that the chemical system is at equilibrium. If a process is known to be thermodynamically favored (through qualitative and/or quantitative analysis of ΔH° and ΔS°), and yet it is not occurring at a	kinetic con	trol. The fact		
rate does not mean that the chemical system is at equilibrium. If a process is known to be thermodynamically favored (through qualitative analysis of Δ H° and Δ S°), and yet it is not occurring at a	that a proc	ess does not		
that the chemical system is at equilibrium. If a process is known to be thermodynamically favored (through qualitative analysis of ΔH° and ΔS°), and yet it is not occurring at a	proceed at	a noticeable		
system is at equilibrium. If a process is known to be thermodynamically favored (through qualitative and/or quantitative analysis of ΔH° and ΔS°), and yet it is not occurring at a	rate does r	not mean		
equilibrium. If a process is known to be thermodynamically favored (through qualitative and/or quantitative analysis of ΔH° and ΔS°), and yet it is not occurring at a	that the ch	emical		
process is known to be thermodynamically favored (through qualitative and/or quantitative analysis of ΔH° and ΔS°), and yet it is not occurring at a	system is a	t		
thermodynamically favored (through qualitative and/or quantitative analysis of ΔH° and ΔS°), and yet it is not occurring at a	equilibrium	n. If a		
favored (through qualitative and/or quantitative analysis of ΔH° and ΔS°), and yet it is not occurring at a	process is l	known to be		
qualitative and/or quantitative analysis of ΔH° and ΔS°), and yet it is not occurring at a	thermodyn	amically		
quantitative analysis of ΔH° and ΔS°), and yet it is not occurring at a	favored (th	irough		
ΔH° and $\Delta S^\circ)$, and yet it is not occurring at a	qualitative	and/or		
is not occurring at a	quantitativ	e analysis of		
	ΔH° and ΔS	ຈ°), and yet it		
measurable rate, then	is not occu	rring at a		
	measurable	e rate, then		
the conclusion is that	the conclus	sion is that		

Curriculum Guide

	curriculum culuc		
the process is under			
kinetic control.			

Curriculum Guide						
General Topic	AP Standards	Learning Objective, Skills & Vocabulary	Resources & Activities	Assessments	Suggested Time (In Days)	
Enduring Understanding: Big Idea 6: Any bond or intermolecular attraction that can be formed can be broken. These two processes are in a dynamic competition, sensitive to initial conditions and external perturbations. Many processes in nature, including large numbers of chemical reactions, are reversible, i.e., these processes can proceed in either direction. Chemical reactions can be reversible at the	Essential knowledge 6.A.1: in many classes of reactions, it is important to consider both the forward and reverse reaction. A. Many readily observable processes are reversible. Examples include evaporating and condensing water, absorption of a gas, or dissolving and precipitating a salt. Relevant and interesting contexts include biological examples (binding of oxygen to hemoglobin and the attachment of molecules to receptor sites in the nose) and environmental examples (transfer of carbon between atmosphere and biosphere and transfer of dissolved substances between atmosphere and hydrosphere). B. Dissolution of a solid,	Learning Objective for EK 6.A.1: LO 6.1 The student is able to, given a set of experimental observations regarding physical, chemical, biological, or environmental processes that are reversible, construct an explanation that connects the observations to the reversibility of the underlying chemical reactions or processes. Vocabulary for Big Idea 6: amphoteric acid dissociation constant Arrhenius model chemical equilibrium conjugate acid base pair Bronsted-Lowry acid Bronsted-Lowry base buffered solution buffering capacity common ion effect complex ion diprotic acid equilibrium	Teacher prepared, Tro. A Molecular Approach, 3 rd Edition, textbook chapter 14	Teacher prepared	See Year-at- a-glance	

		Curriculum Guide		
atomic or	acid-base reactions,	equilibrium constant		
molecular level.	and transfer of	equilibrium expression		
When opposing	electrons in redox	equilibrium position		
processes occur	reactions are important	half-equivalence point		
at the same rate,	examples of reversible	Henderson-Hasselbalch		
a stable but	reactions.	equation		
dynamic state		Ksp		
called	Essential knowledge 6.A.2: the	Кр		
equilibrium is	current state of a system	law of mass action		
established. The	undergoing a reversible	Le Chatelier's Principle		
expression for	reaction can be characterized	oxyacid		
the equilibrium	by the extent to which	percent dissociation		
constant, K, is a	reactants have been converted	pH scale		
mathematical	to products. the relative	polyprotic acids		
expression that	quantities of reaction			
describes the	components are quantitatively	Q		
equilibrium state	described by the reaction	reaction quotient		
associated with a	quotient, Q.	salt		
chemical change.	A. Given an initial set of	solubility determination		
An analogous expression for	reactant and product	solubility product		
the reaction	concentrations, only	titration curve		
quotient, Q,	those sets of			
describes a	concentrations that are			
chemical reaction	consistent with the			
at any point,	reaction stoichiometry			
enabling	can be attained. ICE			
comparison to	(initial, change,			
the equilibrium	equilibrium) tables are			
state. A wide	useful for determining			
range of	which sets of			
equilibrium	concentration values			
constants is	are possible.			
	B. The reaction quotient,		<u> </u>	

		Curriculum Guide		
possible; of	Q, provides a			
particular	convenient measure of			
significance are	the current progress of			
those that arise	a reaction. Q does not			
from acid-base	include substances			
chemistry,	whose concentrations			
particularly as	are independent of the	Learning Objective for EK	Teacher prepared,	
embodied in	amount of substance,	6.A.2:	Tro. A Molecular	
biochemical	such as for a solid in	LOC 2 The student con	Approach, 3 rd Edition,	
systems where	contact with a liquid	LO 6.2 The student can,	textbook chapter 14	
the value of K is	solution or with a gas,	given a manipulation of a chemical reaction or set of		
such that	or for a pure solid or			
significant	liquid in contact with a	reactions (e.g., reversal of reaction or addition of two		
amounts of both	gas.			
reactants and	C. The value of Q (and so	reactions), determine the effects of that manipulation		
products are	also K) changes when a	on Q or K.		
present.	reaction is reversed.	on Q of K.		
Equilibrium	When reactions are			
states can be	added together			
perturbed in a	through the presence			
variety of ways,	of a common			
and the response	intermediate, Q (and so			
to such a	also K) of the resulting			
perturbation is	reaction is a product of			
predictable.	the values of Q (or K)			
Enduring	for the original			
understanding	reactions.			
6.A: Chemical	Essential knowledge 6.A.3:			
equilibrium is a	When a system is at			
dynamic,	equilibrium, all macroscopic			
reversible state	variables, such as			
in which rates of	concentrations, partial			
opposing	pressures, and temperature, do			
				1

AP Chemistry

		Curriculum Guide		
processes are	not change over time.			
equal.	Equilibrium results from an			
A collection of	equality between the rates of			
molecules	the forward and reverse			
undergoing a	reactions, at which point Q = K.			
reversible	A. When equilibrium is			
reaction can	reached, no observable			
adopt a number	changes occur in the			
of configurations	system.			
that are	a. Reactant and			
constrained by	product			
the stoichiometry	molecules are			
and that can be	present.			
ordered by the	b. Concentration			
extent to which	of all species			
the reactants	remains			
have been	constant.			
converted to	B. If the rate of the			
products. As	forward reaction is			
reactants are	greater than the			
converted to	reverse reaction, there			
products, the	is a net conversion of			
reactant	reactants to products.			
concentrations	If the rate of the			
drop; thus, the	reverse reaction is			
rate of the	greater than the	Learning Objectives for EK	Teacher prepared,	
forward reaction	forward reaction, there	6.A.3:	Tro. A Molecular	
decreases.	is a net conversion of		Approach, 3 rd Edition,	
Simultaneously,	products to reactants.	LO 6.3 The student can	textbook chapter 14	
the product	An equilibrium state is	connect kinetics to		
concentrations	reached when these	equilibrium by using		
increase and the	rates balance, at which	reasoning about		
rate of the	point the progress of	equilibrium, such as Le		

AP Chemistry

			Curriculum Guide		
reverse reaction		reaction, Q, becomes	Chatelier's principle, to infer		
increases. At		equal to the	the relative rates of the		
some		equilibrium constant, K.	forward and reverse		
intermediate	C.	Comparing Q to K	reactions.		
point, the		allows the	LO 6.4 The student can,		
concentrations of		determination of	given a set of initial		
reactants and		whether the reaction is	conditions (concentrations		
products are		at equilibrium, or will	or partial pressures) and the		
such that the		proceed toward	equilibrium constant, K, use		
rates of the		products or reactants	the tendency of Q to		
forward and		to reach equilibrium.	approach K to predict and		
reverse reactions	D.	Equilibrium constants	justify the prediction as to		
balance, and		can be determined	whether the reaction will		
there is no net		from experimental	proceed toward products or		
conversion		measurements of the	reactants as equilibrium is		
between		concentrations of the	approached.	Teacher prepared,	
reactants and		reactants and products		Tro. A Molecular	
products. A	-	at equilibrium.	LO 6.5 The student can,	Approach, 3 rd Edition,	
system that has	E.	Given a single reaction,	given data (tabular,	textbook chapter 14	
reached this		initial concentrations,	graphical, etc.) from which		
state is at		and K, the	the state of a system at		
chemical		concentrations at	equilibrium can be obtained,		
equilibrium. The relative		equilibrium may be	calculate the equilibrium		
proportions of	F.	predicted. Graphs of	constant, K.		
reactants and	г.	concentration over	LO 6.6 The student can,		
products at		time for simple	given a set of initial		
equilibrium is		chemical reactions can	conditions (concentrations		
specified by the		be used to understand	or partial pressures) and the		
equilibrium		the establishment of	equilibrium constant, K, use		
constant, K,		chemical equilibrium.	stoichiometric relationships		
which may be			and the law of mass action		
used both		ial knowledge 6.A.4:	(Q equals K at equilibrium)		
	the ma	agnitude of the	to determine qualitatively		

		Curriculum Guide		
quantitatively (to	equilibrium constant, K, can be	and/or quantitatively the		
predict	used to determine whether the	conditions at equilibrium for		
concentrations at	equilibrium lies toward the	a system involving a single		
equilibrium) and	reactant side or product side.	reversible reaction.		
qualitatively (to	A. For many aqueous			
reason about the	reactions, K is either			
relative amounts	very large or very small,			
of reactants and	and this may be used			
products present	to reason qualitatively			
at equilibrium).	about equilibrium			
, , ,	systems.			
	B. Particulate			
	representations can be			
	used to describe the			
	relationship between			
	the numbers of			
	reactant and product			
	particles present at			
	equilibrium, and the			
	value of the			
	equilibrium constant.			
	Essential knowledge 6.B.1:			
	systems at equilibrium respond			
	to disturbances by partially			
	countering the effect of the			
	disturbance (Le Chatelier's			
	principle).	Learning Objective for EK		
Enduring	A. Le Chatelier's principle	6.A.4:	Teacher prepared,	
understanding	can be used to predict	LO 6.7 The student is able,	Tro. A Molecular	
6.B: Systems at	the response of a	for a reversible reaction that	Approach, 3 rd Edition,	
equilibrium are	system to the following	has a large or small K, to	textbook chapter 14	
	, 6			

		Curriculum Guide		
responsive to	stresses: addition or	determine which chemical		
external	removal of a chemical	species will have very large		
perturbations,	species, change in	versus very small		
with the	temperature, change in	concentrations at		
response leading	volume/pressure of a	equilibrium.		
to a change in	gas phase system, and			
the composition	dilution of a reaction			
of the system.	system with water or			
Chemical equilibrium is a dynamic state in which the rates of the forward and reverse reactions are equal. A change in conditions, such as addition	other solvent. B. Le Chatelier's principle can be used to reason about the effects a stress will have on experimentally measurable properties, such as pH, temperature, and color of a solution.			
of a chemical				
species, change	Essential knowledge 6.B.2:			
in temperature, or change in volume, can	A disturbance to a system at equilibrium causes Q to differ from K, thereby taking the	Learning Objectives for EK 6.B.1:		
cause the rate of	system out of the original	LO 6.8 The student is able to		
the forward and	equilibrium state. the system	use Le Chatelier's principle		
reverse reactions	responds by bringing Q back	to predict the direction of		
to fall out of	into agreement with K, thereby	the shift resulting from		
balance. Such a	establishing a new equilibrium state.	various possible stresses on		
change is called a	A. Le Chatelier's principle	a system at chemical		
stress on the	involves qualitative	equilibrium.		
system. The	reasoning that is	LO 6.9 The student is able to		
system is then	closely connected to	use Le Chatelier's principle		
temporarily out				

		Curriculum Guide		
of equilibrium,	the quantitative	to design a set of conditions		
and there is a net	approach of 6.A.3.	that will optimize a desired		
conversion	B. Some stresses, such as	outcome, such as product		
between	changes in	yield.		
reactants and	concentration, cause a			
products until a	change in Q. A change		Teacher prepared,	
new equilibrium	in temperature causes		Tro. A Molecular	
state is	a change in K. In either		Approach, 3 rd Edition,	
established. This	case, the reaction shifts		textbook chapter 14	
net conversion is	to bring Q and K back			
referred to as a	into equality.			
shift of the				
chemical		Learning Objective for EK		
reaction. Le		6.B.2:		
Chatelier's	Essential knowledge 6.C.1:	LO 6.10 The student is able		
principle	Chemical equilibrium reasoning	to connect Le Chatelier's		
provides a	can be used to describe the	principle to the comparison		
convenient	proton-transfer reactions of	of Q to K by explaining the		
means to reason	acid-base chemistry.	effects of the stress on Q		
qualitatively	A. The concentrations of	and K.		
about the	hydronium ion and			
direction of the	hydroxide ion are often			
shift in an	reported as pH and			
equilibrium	pOH, respectively.			
system resulting	B. Water autoionizes with			
from various	an equilibrium			
possible stresses.	constant, K _w . For pure			
	water, $pH = pOH$, and			
	this condition is called			
Enduring	"neutrality," or a			
understanding	neutral solution. At			
6.C: Chemical	25°C, pK _w = 14, and			
equilibrium plays	thus pH and pOH add			

		Curriculum Guide		
an important role	to 14. In pure water at			
in acid-base	25°C, pH = pOH = 7.			
chemistry and in	C. Common strong acids		Teacher prepared,	
solubility.	include HCl, HBr, HI,		Tro. A Molecular	
The proton	HClO ₄ , H ₂ SO ₄ , and		Approach, 3 rd Edition,	
The proton-	HNO ₃ . The molecules of		textbook chapters 15 and 16	
exchange	strong acids completely		and 16	
reactions of acid-	ionize in solution to			
base chemistry are reversible	produce hydronium			
reactions that	ions. In other words,			
	100 percent of the			
reach equilibrium	molecules of the strong			
quickly, and much of acid-	acid are ionized in a			
	solution (assuming that			
base chemistry can be	the concentration is	Learning Objectives for EK		
understood by	not extremely high). As	6.C.1:		
	such, the concentration	LO 6.11 The student can		
applying the principles of	of H_3O^+ in a strong acid	generate or use a particulate		
chemical	solution is equal to the	representation of an acid		
equilibrium.	initial concentration of	strong or weak or		
Most acid-base	the strong acid, and	polyprotic) and a strong		
reactions have	thus the pH of the	base to explain the species		
either large or	strong acid solution is	that will have large versus		
small K, and so	easily calculated.	small concentrations at		
qualitative	D. Common strong bases	equilibrium.		
conclusions	include group I and II			
regarding the	hydroxides. When	LO 6.12 The student can		
equilibrium state	dissolved in solution,	reason about the distinction		
can often be	strong bases	between strong and weak		
drawn without	completely dissociate	acid solutions with similar		
extensive	to produce hydroxide	values of pH, including the		
computations.	ions. Note that some	percent ionization of the		
The dissolution	group II hydroxides are	acids, the concentrations		

		Curriculum Guide		
of a solid in a	slightly soluble in	needed to achieve the same		
solvent is also a	water. However, 100	pH, and the amount of base		
reversible	percent of the	needed to reach the		
reaction that	dissolved base is	equivalence point in a		
often reaches	ionized.	titration.		
equilibrium quickly, and so can be understood by applying the principles of chemical equilibrium.	E. Weak acid molecules react with water to transfer a proton to the water molecule. However, weak acid molecules only partially ionize in this way. In other words, only a small percentage of the molecules of a weak acid are ionized in a solution (assuming that the initial concentration is not extremely low). Thus, the concentration of H_3O^+ does not equal the initial concentration of the molecular acid, and the vast majority of the acid molecules remain un-ionized. A solution of a weak acid thus involves equilibrium between an un-ionized acid and its conjugate base. The equilibrium	LO 6.13 The student can interpret titration data for mono-protic or polyprotic acids involving titration of a weak or strong acid by a strong base (or a weak or strong base by a strong acid) to determine the concentration of the titrant and the pK _a for a weak acid, or the pK _b for a weak base. LO 6.14 The student can, based on the dependence of K _w on temperature, reason that neutrality requires [H ⁺] = [OH ⁻] as opposed to requiring pH = 7, including especially the applications to biological systems. LO 6.15 The student can identify a given solution as containing a mixture of strong acids and/or bases and calculate or estimate the pH (and concentrations of all chemical species) in		

	Curriculum Guide	
	ionize in this way	
	(assuming that the	
	initial concentration is	
	not extremely low).	
	Thus, the	
	concentration of OH ⁻ in	
	the solution does not	
	equal the initial	
	concentration of the	
	molecular base, and	
	the vast majority of the	
	base molecules remain	
	un-ionized. A solution	
	of a weak base thus	
	involves an equilibrium	
	between an un-ionized	
	base and its conjugate	
	acid. The equilibrium	
	constant for this	
	reaction is K _b , often	
	reported as pK _b . The pH	
	of a weak base solution	
	can be determined	
	from the initial base	
	concentration and the	
	pK _b .	
G.	When an acid molecule	
	loses its proton, it	
	becomes a base, since	
	the resultant ion could	
	react with water as a	
	base. The acid and base	
	are referred to as a	
L		

		Curriculum Guide		
	conjugate acid-base			
	pair. The ionization			
	constants for the acid-			
	base pair are related to			
	K _w , and at 25°C, pK _a +			
	$pK_b = 14$. This relation			
	can be used to reason			
	qualitatively about the			
	relative strengths of			
	conjugate acids and			
	bases. For example, the			
	conjugate base of a			
	strong acid is a much			
	weaker base than H_2O ,			
	and therefore does not			
	react as a base in			
	aqueous solutions.			
H.	The pH of an acid			
	solution depends on			
	both the strength of			
	the acid and the			
	concentration of the			
	acid. If we compare			
	solutions of a weak			
	acid and of a strong			
	acid at the same pH,			
	we find that both			
	solutions have the			
	same concentration of			
	H_3O^+ (aq). However,			
	the strong acid is			
	completely dissociated			
	into ions in solution,			
L				

		Curriculum Guide		
	whereas the weak acid			
	is only partially			
	dissociated into ions in			
	solution. Thus, there			
	are vastly more un-			
	ionized acid molecules			
	in the weak acid			
	solution than in the			
	strong acid solution at			
	the same pH. Thus, to			
	achieve solutions of			
	equal pH, the weak			
	acid solution must be a			
	much greater			
	concentration than the			
	strong acid solution. If			
	we compare solutions			
	of a weak acid and of a			
	strong acid of the same			
	initial concentration,			
	the concentration of			
	H_3O^+ in the strong acid			
	solution is much larger			
	(and the pH thus lower)			
	since the strong acid is			
	100 percent ionized.			
١.	Reactions of acids and			
	bases are called			
	neutralization			
	reactions, and these			
	reactions generally			
	have K > 1, and thus			
	can be considered to			

	Curriculum Guide		
go to completion.			
a. For a mixture			
of a strong acid	1		
with a strong			
base, the			
neutralization			
reaction is H ₃ C	+		
$+ OH^{-} \rightarrow H_2O.$			
The K for this			
reaction is 10 ¹			
at 25°C, so the			
reaction goes			
to completion.			
This allows the			
pH of mixtures			
of strong acids			
and bases to b	e		
determined			
from the			
limiting			
reactant, eithe	r		
the acid or the			
base.			
b. When a strong			
base is added			
to a solution o	-		
a weak acid, a			
neutralization			
reaction			
occurs:			
conjugate acid			
+ OH- →			
conjugate base			

Curriculum Guide

		Curriculum Guide		
	+ H ₂ O. iii.			
	When a strong			
	acid is added to			
	a solution of a			
	weak base, a			
	neutralization			
	reaction			
	occurs:			
	conjugate base			
	+ H ₃ O ⁺ →			
	conjugate acid			
	+ H ₂ O.			
J	. For a weak acid			
	solution and a strong			
	acid solution with the			
	same pH, it takes much			
	more base to neutralize			
	the weak acid solution			
	because the initial acid			
	concentration is much			
	larger. The weak acid			
	solution contains a			
	large amount of un-			
	ionized acid molecules.			
	Therefore, a weak acid			
	solution resists changes			
	in pH for a much			
	greater amount of			
	added base.			
к	K. A titration technique			
	exists for neutralization			
	reactions. At the			
	equivalence point, the			
L				

		Curriculum Guide		
	moles of titrant and the			
	moles of titrate are			
	present in			
	stoichiometric			
	proportions. In the			
	vicinity of the			
	equivalence point, the			
	pH rapidly changes.			
	This can be used to			
	determine the			
	concentration of the			
	titrant.			
L.	As base is added to			
	either a strong acid			
	solution or a weak acid			
	solution, the H_3O^+ (aq)			
	concentration does not			
	change much. The			
	change in pH is less			
	than ~1.5 for the region			
	where 10 to 90 percent			
	of the base needed to			
	reach the equivalence			
	point has been added.			
N	1. The pK_a of an acid can			
	be determined from			
	the pH at the half			
	equivalence point of			
	the titration if the			
	equivalence point is			
	known (i.e., the			
	concentration of both			
	the titrant and analyte			

	Curriculum Guide	 	
are known).			
N. For polyprotic acids,			
the use of titration			
curves to evaluate the			
number of labile			
protons is important,			
as well as knowing			
which species are			
present in large			
concentrations at any			
region along the curve.			
XX Numerical computation of			
the concentration of each			
species present in the titration			
curve for polyprotic acids is			
beyond the scope of this course			
and the AP Exam.			
Rationale: Such computations			
for titration of monoprotic			
acids are within the scope of			
the course, as is qualitative			
reasoning regarding what			
species are present in large			
versus small concentrations at			
any point in titration of a			
polyprotic acid. However,			
additional computations of the			
concentration of each species			
present in the titration curve			
for polyprotic acids may			
encourage algorithmic			
calculations and were not			

	Curriculum Guide
,	viewed as the best way to
	deepen understanding of the
	big ideas.
	O. Halfway to the
	equivalence point, the
	contents of a solution,
	formed by titrating a
	weak acid, is different
	from that formed by
	titrating a strong acid.
	For a strong acid, the
	main species in a
	solution halfway to the
	equivalence point are
	$H_3O^+(aq)$, the anion
	from the acid (e.g., Cl ⁻ ,
	NO_3), and the cation
	from the base (e.g.,
	Na⁺). The total positive
	charge is equal to the
	total negative charge.
	For a weak acid, the
	main species in a
	solution halfway to the
	equivalence point are
	$H_3O^+(aq)$, the anion
	from the acid (e.g.,
	CH ₃ COO [−] , F [−]), the
	cation from the base
	(e.g., Na ⁺), and
	undissociated acid, HA.
	The total positive
	charge is equal to the

	Curriculum Guide		
total negative charge,			
and [HA] = [A [–]].			
Essential knowledge 6.C.2:			
the pH is an important			
characteristic of aqueous			
solutions that can be controlled			
with buffers. Comparing pH to		Teacher prepared,	
pK_a allows one to determine the		Tro. A Molecular	
protonation state of a molecule		Approach, 3 rd Edition,	
with a labile proton.		textbook chapters 15	
The pH of an aqueous solution		and 16	
is determined by the identity			
and concentration of the			
substance that is dissolved in			
water. The value of the pH is an			
important feature of the			
solution because it			
characterizes the relative			
tendency of the solution to			
accept a proton from an acid			
added to the solution, or to			
donate a proton to a base that			
is added. For acid-base			
systems, pH characterizes the			
relative availability of protons,			
much as temperature			
characterizes the relative			
availability of kinetic energy in			
the environment. It is often	Learning Objectives for EK		
desirable to use a solution as	6.C.2:		
an environment that maintains	LO 6.18 The student can		
a relatively constant pH so that	design a buffer solution with		
the addition of an acid or base	a target pH and buffer		

	Curriculum Guide	 	
does not change the pH (e.g.,	capacity by selecting an		
amino acids and proteins in the	appropriate conjugate acid-		
body — the blood maintains a	base pair and estimating the		
relatively constant pH).	concentrations needed to		
A. A buffer solution contains a large	achieve the desired capacity.		
concentration of both	LO 6.19 The student can		
members in a	relate the predominant form		
conjugate acid-base	of a chemical species		
pair. The conjugate	involving a labile proton		
acid reacts with added	(i.e.,		
base and the conjugate	protonated/deprotonated		
base reacts with added	form of a weak acid) to the		
acid. The pH of the	pH of a solution and the pK _a		
buffer is related to the	associated with the labile		
pK _a and the concentration ratio of acid and base forms. The buffer capacity is related to absolute concentrations of the acid and base forms. These relationships can be used both quantitatively and qualitatively to reason about issues such as the ratio of acid to base forms in a given buffer, the impact of this on the buffer capacity for	proton. LO 6.20 The student can identify a solution as being a buffer solution and explain the buffer mechanism in terms of the reactions that would occur on addition of acid or base.		
added acid or base, and the choice of an			

	Curriculum Guide		
appropriate conjugate			
acid-base pair for a			
desired buffer pH			
(including polyprotic			
acids).			
XX Computing the change in			
pH resulting from the addition			
of an acid or a base to a buffer			
is beyond the scope of this			
course and the AP Exam.			
Rationale: Algorithmic			
calculations of pH changes are			
not viewed as the best way to			
deepen understanding of the			
big ideas.			
big ideas.			
XX The production of the			
Henderson-Hasselbalch			
equation by algebraic			
manipulation of the relevant			
equilibrium constant			
expression is beyond the scope			
of this course and the AP Exam.			
Rationale: Reasoning about the			
protonation states of weak			
acids in solution and the			
functioning of buffers is within			
the scope of the course.			
However, since the Henderson-			
Hasselbalch equation is merely			
a rearrangement of the law of			
mass action for a weak acid,			

	Curriculum Guide		
inclusion of its derivation was			
not viewed as the best way to			
deepen understanding of the			
big ideas.			
B. If $[A^-]/[HA]$ starts as 1,			
it is not until the ratio			
changes by a factor of			
10 that a 1 pH unit			
change occurs; adding			
small amounts of either			
acid or base does not			
change the ratio much,			
so the pH changes are			
much smaller for			
buffers than un-			
buffered solutions.			
C. Weak acids and their			
conjugate bases make			
good buffers. Strong			
acids and bases do not.			
It takes much more			
base to change the pH			
of a weak acid solution			
because there is a large			
reservoir of un-			
dissociated weak acid.			
D. By comparing the pH of			
a solution to the pK _a of			
any acid in the solution,			
the concentration ratio			
between the acid and			
base forms of that acid			
(the protonation state)		 	

		Curriculum Guide		
	can be determined. For			
	example, if pH < pK _a ,			
	the acid form has a			
	higher concentration			
	than the base form. If			
	pH > pK_a , the base form			
	has a higher			
	concentration than the			
	acid form. Applications			
	of this relationship			
	include the use of acid-			
	base indicators, the			
	protonation state of			
	protein side chains			
	(including acids or			
	proteins with multiple			
	labile protons), and the			
	pH required for acid			
	catalyzed reactions in			
	organic chemistry.			
	Essential knowledge 6.C.3:			
	the solubility of a substance can			
	be understood in terms of		Teacher prepared,	
	chemical equilibrium.		Tro. A Molecular	
	A. The dissolution of a		Approach, 3 rd Edition,	
	substance in a solvent		textbook chapter 16	
	is a reversible reaction,		and 18	
	and so has an			
	associated equilibrium			
	constant. For			
	dissolution of a salt,			
	the reaction quotient,			
L		<u> </u>		

AP Chemistry

	Curriculum Guide		
 Q, is referred to as the solubility product, and the equilibrium constant for this reaction is denoted as K_{sp}, the solubility-product constant. B. The solubility of a substance can be calculated from the K_{sp} for the dissolution reaction. This relation can also be used to reason qualitatively about the relative solubility of different substances. C. The free energy change (ΔG°) for dissolution of a substance reflects both the breaking of the forces that hold the solid together and the interaction of the dissolved species with the solvent. In addition, entropic effects must be considered. Qualitative reasoning regarding solubility requires consideration of all of these contributions to the 	Learning Objectives for EK 6.C.3: LO 6.21 The student can predict the solubility of a salt, or rank the solubility of salts, given the relevant K_{sp} values. LO 6.22 The student can interpret data regarding solubility of salts to determine, or rank, the relevant K_{sp} values. LO 6.23 The student can interpret data regarding the relative solubility of salts in terms of factors (common ions, pH) that influence the	Teacher prepared, Tro. A Molecular Approach, 3 rd Edition, textbook chapter 11 and 12	

		Curriculum Guide	 	
XX M "solubi	free energy. All sodium, potassium, ammonium, and nitrate salts are soluble in water. emorization of other ility rules" is beyond the of this course and the AP	solubility. LO 6.24 The student can analyze the enthalpic and entropic changes associated with the dissolution of a salt, using particulate level interactions and representations.		
solubili deeper big ide E.	ale: Memorization of ity rules does not n understanding of the as. A salt is less soluble in a solution that has an ion in common with the salt. This has important consequences for solubility of salts in seawater and other natural bodies of water. This phenomenon can be understood qualitatively using Le Chatelier's principle. The solubility of a salt			
F.	will be pH sensitive when one of the ions is an acid or base. Applications include the iron hydroxides of			

acid-mine drainage and the effects of acid rain on solubility of carbonates. These effects can be understood qualitatively with Le Chatelier's principle. X X Computations of solubility as a function of pH are beyond the scope of this course and the AP Exam. Rationale: Computations of solubility as a function of pH do not deepen understanding of the big ideas. X X Computations of solubility in such solutions are beyond the AP Exam. Rationale: Computations of solubility in such solutions are beyond the AP Exam. Rationale: Computations of solubility in such solutions are beyond the AP Exam. Rationale: Computations of solubility in such solutions do not deepen understanding of the big ideas. Essential knowledge 6.D.1: When the difference in Gibbs free energy between reactants and products (AG*) is much			Curriculum Guide		
on solubility of carbonates. These effects can be understood qualitatively with Le Chatelier's principle. X X Computations of solubility as a function of pH are beyond the scope of this course and the AP Exam. Rationale: Computations of solubility as a function of pH do not deepen understanding of the big ideas. X X Computations of solubility in such solutions are beyond the scope of this course and the AP Exam. Rationale: Computations of solubility in such solutions do not deepen understanding of the big ideas. Essential knowledge 6.0.1: When the difference in Gibbs free energy between reactants		-			
carbonates. These effects can be understood qualitatively with Le Chatelier's principle. X X Computations of solubility as a function of pH are beyond the scope of this course and the AP Exam. Rationale: Computations of solubility as a function of pH do not deepen understanding of the big ideas. X X Computations of solubility x X Computations of solubility in such solutions are beyond the scope of this course and the scope of this course and the big ideas. X X Computations of solubility x M Computations of solubility in such solutions are beyond the scope of this course and the AP Exam. Rationale: Computations of solubility in such solutions do not deepen understanding of the big ideas. Essential knowledge 6.D.1: When the difference in Gibbs When the difference in Gibbs free energy between reactants					
effects can be understood qualitatively with Le Chatelier's principle. XX Computations of solubility as a function of pH are beyond the scope of this course and the scope of this course and the AP Exam. Rationale: Computations of Rationale: Computations of pH do not deepen understanding of the big ideas. XX Computations of solubility in such solutions are beyond the scope of this course and the scope of this course and the scope of this course and the scope of this course and the scope of this course and the scope of this course and the scope of this course and the scope of this course and the scope of this course and the scope of this course and the dP Exam. Rationale: Computations of solubility in such solutions do not deepen understanding of the big ideas. Essential knowledge 6.D.1: When the difference in Gibbs When the difference in Gibbs free energy between reactants					
understood qualitatively with Le Chatelier's principle. X X Computations of solubility as a function of pH are beyond the scope of this course and the AP Exam. Rationale: Computations of solubility as a function of pH do not deepen understanding of the big ideas. X X Computations of solubility in such solutions are beyond the scope of this course and the AP Exam. X X Computations of solubility in such solutions are beyond the scope of this course and the AP Exam. Rationale: Computations of Rationale: Computations of solubility in such solutions do not deepen understanding of the scope of this course and the AP Exam. Rationale: Computations of solubility in such solutions do not deepen understanding of the big ideas. Essential knowledge 6.D.1: When the difference in Gibbs free energy between reactants					
qualitatively with Le Chatelier's principle.XX Computations of solubility as a function of pH are beyond the scope of this course and the AP Exam.Rationale: Computations of solubility as a function of pH do not deepen understanding of the big ideas.XX Computations of solubility in such solutions are beyond the scope of this course and the AP Exam.Rationale: Computations of solubility in such solutions of solubility in such solutions are beyond the scope of this course and the AP Exam.Rationale: Computations of solubility in such solutions do not deepen understanding of the big ideas.Essential knowledge 6.D.1: When the difference in Gibbs free energy between reactants					
Chatelier's principle. X Computations of solubility as a function of pH are beyond the scope of this course and the AP Exam. Rationale: Computations of solubility as a function of pH do not deepen understanding of the big ideas. X Computations of solubility in such solutions are beyond the scope of this course and the AP Exam. Rationale: Computations of solubility in such solutions do not deepen understanding of the big ideas. Essential knowledge 6.D.1: When the difference in Gibbs free energy between reactants					
X X Computations of solubility as a function of pH are beyond the scope of this course and the AP Exam. Rationale: Computations of solubility as a function of pH do not deepen understanding of the big ideas. X X Computations of solubility in such solutions are beyond the scope of this course and the AP Exam. X Rationale: Computations of solubility in such solutions of not deepen understanding of the big ideas. Rationale: Computations of solubility in such solutions do not deepen understanding of the big ideas. Essential knowledge 6.D.1: When the difference in Gibbs free energy between reactants When the difference in Gibbs					
as a function of pH are beyond the scope of this course and the AP Exam. Rationale: Computations of solubility as a function of pH do not deepen understanding of the big ideas. XX Computations of solubility in such solutions are beyond the scope of this course and the AP Exam. Rationale: Computations of solubility in such solutions are beyond the scope of this course and the AP Exam. Rationale: Computations of solubility in such solutions do not deepen understanding of the big ideas. Essential knowledge 6.D.1: When the difference in Gibbs free energy between reactants					
the scope of this course and the AP Exam. Rationale: Computations of solubility as a function of pH do not deepen understanding of the big ideas. X X Computations of solubility in such solutions are beyond the scope of this course and the AP Exam. Rationale: Computations of solubility in such solutions do not deepen understanding of the big ideas. Rationale: Computations of solubility in such solutions do not deepen understanding of the big ideas. Rationale: Computations of solubility in such solutions do not deepen understanding of the big ideas. Essential knowledge 6.D.1: When the difference in Gibbs free energy between reactants					
the AP Exam. Rationale: Computations of solubility as a function of pH do not deepen understanding of the big ideas. X X Computations of solubility in such solutions are beyond the scope of this course and the AP Exam. Rationale: Computations of solubility in such solutions do not deepen understanding of the big ideas. Essential knowledge 6.D.1: When the difference in Gibbs free energy between reactants					
Rationale: Computations of solubility as a function of pH do not deepen understanding of the big ideas. X X Computations of solubility in such solutions are beyond the scope of this course and the AP Exam. Rationale: Computations of solubility in such solutions do not deepen understanding of the big ideas. Rationale: Computations of solubility in such solutions do not deepen understanding of the big ideas. Essential knowledge 6.D.1: When the difference in Gibbs free energy between reactants					
solubility as a function of pH do not deepen understanding of the big ideas. X X Computations of solubility in such solutions are beyond the scope of this course and the AP Exam. Rationale: Computations of solubility in such solutions do not deepen understanding of the big ideas. Essential knowledge 6.D.1: When the difference in Gibbs free energy between reactants					
not deepen understanding of the big ideas. X X Computations of solubility in such solutions are beyond the scope of this course and the AP Exam. Rationale: Computations of solubility in such solutions do not deepen understanding of the big ideas. Essential knowledge 6.D.1: When the difference in Gibbs free energy between reactants		-			
the big ideas. X Computations of solubility in such solutions are beyond the scope of this course and the AP Exam. Rationale: Computations of solubility in such solutions do not deepen understanding of the big ideas. Essential knowledge 6.D.1: When the difference in Gibbs free energy between reactants					
 X Computations of solubility in such solutions are beyond the scope of this course and the AP Exam. Rationale: Computations of solubility in such solutions do not deepen understanding of the big ideas. Essential knowledge 6.D.1: When the difference in Gibbs free energy between reactants 					
in such solutions are beyond the scope of this course and the AP Exam. Rationale: Computations of solubility in such solutions do not deepen understanding of the big ideas. Essential knowledge 6.D.1: When the difference in Gibbs free energy between reactants		the big ideas.			
the scope of this course and the AP Exam. Rationale: Computations of solubility in such solutions do not deepen understanding of the big ideas. Image: Computation of the big ideas. Essential knowledge 6.D.1: When the difference in Gibbs free energy between reactants Image: Computation of the big ideas.		XX Computations of solubility			
the AP Exam. Rationale: Computations of solubility in such solutions do not deepen understanding of the big ideas. Essential knowledge 6.D.1: When the difference in Gibbs free energy between reactants		in such solutions are beyond			
Rationale: Computations of solubility in such solutions do not deepen understanding of the big ideas. Image: Computation of the big ideas. Essential knowledge 6.D.1: When the difference in Gibbs free energy between reactants					
solubility in such solutions do not deepen understanding of the big ideas. Essential knowledge 6.D.1: When the difference in Gibbs free energy between reactants		the AP Exam.			
solubility in such solutions do not deepen understanding of the big ideas. Essential knowledge 6.D.1: When the difference in Gibbs free energy between reactants		Rationale: Computations of			
the big ideas. Essential knowledge 6.D.1: When the difference in Gibbs free energy between reactants					
Essential knowledge 6.D.1: When the difference in Gibbs free energy between reactants					
When the difference in Gibbs free energy between reactants		the big ideas.			
When the difference in Gibbs free energy between reactants		Essential knowledge 6.D.1			
free energy between reactants		_			
		and products (ΔG°) is much			
Enduring larger than the thermal energy	Enduring				
understanding (RT), the equilibrium constant	-				
6.D: The is either very small (for $\Delta G^{\circ} > 0$)	-	is either very small (for $\Delta G^{\circ} > 0$)			

AP Chemistry

		Curriculum Guide			
equilibrium	or very large (for $\Delta G^{\circ} < 0$).				
constant is	When ΔG° is comparable to the				
related to	thermal energy (RT), the				
temperature and	equilibrium constant is near 1.				
the difference in Gibbs free energy	The free energy change for a chemical process in which all of		Teacher prepared,		
between	the reactants and products are		Tro. A Molecular		
reactants and	present in a standard state (as		Approach, 3 rd Edition,		
products.	pure substances, as solutions of		textbook chapter 16		
The magnitude of	1 molar concentration, or as		and 18		
the equilibrium	gases at a pressure of 1 bar, or				
constant, K,	1 atm) is given a particular				
specifies the	symbol, ΔG°.				
relative	A. The equilibrium				
proportion of	constant is related to				
reactants and	free energy by $K = e^{-1}$				
products present	$\Delta G^{\circ/RT}$. This relation may				
at equilibrium.	be used to connect				
This is directly	thermodynamic				
related to the	reasoning about a				
change in Gibbs	chemical process to				
free energy associated with	equilibrium reasoning				
	about this process. This				
the reaction, ΔG° . The species	reasoning can be done				
that have the	quantitatively through				
lower free	numerical examples or				
energy (reactants	qualitatively through				
versus products)	estimation. For				
have larger	example, the thermal				
relative	energy (RT) at room	Learning Objective for EK			
concentrations at	temperature is 2.4	6.D.1:			
equilibrium. For	kJ/mol. This sets the				
	<u> </u>	L		<u> </u>	l

			Curriculum Guide			
both reactants		energy scale for	LO 6.25 The student is able			
and products to		relating the enthalpy	to express the equilibrium			
be present with		and entropy changes to	constant in terms of ΔG° and			
significant		the magnitude of K,	RT and use this relationship			
concentrations at		since when the	to estimate the magnitude			
equilibrium, i.e.,		magnitude of ∆G° is	of K and, consequently, the thermodynamic favorability			
for K to be near		large compared to the	of the process.			
1, the magnitude		thermal energy, then K	of the process.			
of ∆G° must be		deviates strongly from				
roughly		1.				
equivalent to the	В.	The relation K = $e^{-\Delta G^{\circ}/RT}$				
thermal energy		provides a refinement				
(RT).		of the statement in 5.E				
		that processes with ΔG°				
		< 0 favor products,				
		while those with ΔG° >				
		O favor reactants. If ΔG°				
		< 0, then K > 1, while if				
		$\Delta G^{\circ} > 0$, then K < 1. The				
		phrase "favors				
		products" in 5.E is				
		therefore more				
		precisely stated as K >				
		1, while "favors				
		reactants" in 5.E is				
		more precisely stated				
		as K < 1.				
	С.	Since K is directly				
		related to free energy,				
		when the magnitude of		Teacher Prepared		
		K is of primary interest,				
		it is useful to consider				
		whether a reaction is				
L			1	1	1	·]

		Curriculum Guide		
Introduction to Organic Chemistry	 exergonic (ΔG° < 0) or endergonic (ΔG° > 0). (Exothermic versus endothermic is the useful distinction when the issue of interest is whether a reaction releases or consumes energy.) In many biological applications, the magnitude of K is of central importance, and so the exergonic/endergonic distinction is useful. The bonding of carbon, nitrogen, oxygen, and the halogens. Functional groups Naming straight chain alkanes. Naming the substituents. 	Learning objectives: N/A	Teacher Prepared	
Alkane nomenclature		Learning objectives: N/A		

AP Chemistry

Dunmore School District Curriculum Guide							
after the AP							
exam							
Alkene, alkyne, and cycloalkane nomenclature, isomerism	 Define alkene and alkyne. Naming alkenes and alkynes. cis/trans isomers. E/Z isomers 						

General Topic	Anchor Descriptor	Eligible Content,	Resources & Activities	Assessments	Suggested
	PA Academic and Core	Essential Knowledge,			Time
	Standards	Skills & Vocabulary			(In Days)
Final Exam					See Year-at- a-glance